
This Provisional PDF corresponds to the article as it appeared upon acceptance. Copyedited and
fully formatted PDF and full text (HTML) versions will be made available soon.

Coev2Net: a computational framework for boosting confidence in
high-throughput protein-protein interaction datasets

Genome Biology 2012, 13:R76 doi:10.1186/gb-2012-13-8-r76

Raghavendra Hosur (rhosur@mit.edu)
Jian Peng (pengjian@ttic.edu)

Arunachalam Vinayagam (vinu@genetics.med.harvard.edu)
Ulrich Stelzl (stelzl@molgen.mpg.de)

Jinbo Xu (j3xu@tti-c.org)
Norbert Perrimon (perrimon@receptor.med.harvard.edu)

Jadwiga Bienkowska (jbienkowska@gmail.com)
Bonnie Berger (bab@mit.edu)

ISSN 1465-6906

Article type Method

Submission date 3 May 2012

Acceptance date 14 August 2012

Publication date 31 August 2012

Article URL http://genomebiology.com/2012/13/8/R76

This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see
copyright notice below).

Articles in Genome Biology are listed in PubMed and archived at PubMed Central.

For information about publishing your research in Genome Biology go to

http://genomebiology.com/authors/instructions/

Genome Biology

© 2012 Hosur et al. ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:rhosur@mit.edu
mailto:pengjian@ttic.edu
mailto:vinu@genetics.med.harvard.edu
mailto:stelzl@molgen.mpg.de
mailto:j3xu@tti-c.org
mailto:perrimon@receptor.med.harvard.edu
mailto:jbienkowska@gmail.com
mailto:bab@mit.edu
http://genomebiology.com/2012/13/8/R76
http://genomebiology.com/authors/instructions/
http://creativecommons.org/licenses/by/2.0


A computational framework for boosting confidence in high-throughput 
protein-protein interaction datasets 

Raghavendra Hosur1, Jian Peng1,2, Arunachalam Vinayagam3, Ulrich Stelzl4, Jinbo Xu2, Norbert 
Perrimon3,5, Jadwiga Bienkowska6,8 & Bonnie Berger1,7,8 

 

1. Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, MIT, Cambridge-02139, 
MA. 

2. Toyota Technological Institute, 6045 S. Kenwood Ave., Chicago-60637, IL. 

3. Department of Genetics, 77 Avenue Louis Pasteur, Harvard Medical School, Boston-02115, MA. 

4. Otto-Warburg Laboratory, Ihnestra e 63-73, Max Planck Institute for Molecular Genetics, Berlin-
D14195, Germany.  

5. Howard Hughes Medical Institute, 20 Shattuck Street, Boston-02115, MA. 

6. Computational Biology group, Biogen Idec, 14 Cambridge center, Cambridge-02142, MA. 

7. Department of Mathematics, 77 Massachusetts Avenue, MIT, Cambridge-02139, MA. 

8. Corresponding Authors, email: bab@mit.edu, jbienkowska@gmail.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:bab@mit.edu
mailto:jbienkowska@gmail.com


 

Abstract 

 Improving the quality and coverage of the protein interactome is of tantamount 

importance for biomedical research, particularly given the various sources of 

uncertainty in high-throughput techniques. We introduce a structure-based 

framework, Coev2Net, for computing a single confidence score that addresses both 

false-positive and false-negative rates. Coev2Net is easily applied to thousands of 

binary protein interactions and has superior predictive performance over existing 

methods. We experimentally validate selected high-confidence predictions in the 

human MAPK network and show that predicted interfaces are enriched for cancer –

related or damaging SNPs. Coev2Net can be downloaded at 

http://struct2net.csail.mit.edu.  
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Background 

Protein-protein interactions (PPIs) play a critical role in all cellular processes, ranging from 

cellular division to apoptosis. Elucidating and analyzing PPIs is thus essential to 

understanding the underlying mechanisms in biology. Indeed, this has been a major focus of 

research in recent years, providing a wealth of experimental data about protein associations 

[1-9] Current PPI networks have been constructed using a number of techniques such as 

yeast-two-hybrid (Y2H), coimmuno or coaffinity purification followed by mass 

spectroscopy (coIP or coAP/MS) and curation of published low-throughput experiments 

[10-16]. Despite this tremendous push, the current coverage of PPIs is still rather poor (e.g. 

< 10% of interactions in humans) [17]. Additionally, despite considerable improvements in 

HTP techniques, they are still prone to spurious errors and systematic biases, yielding a 

significant number of false-positives and false-negatives [18,19,20,21]. This limits our 

ability to assess the true quality and coverage of the “interactome” [22,23,24].   

Akin to sequencing of the human genome, complete high-confidence descriptions of 

protein-protein interactions is a fundamental step towards human interactome mapping 

[22,25]. Also present are the challenging issues of data quality and size estimation, as 

encountered in the human genome project [24,26,23].  However, unlike the challenges faced 

previously with sequencing, we still do not understand the rules of association of protein 

molecules, and are unable to distinguish between biophysical interactions, true biological 

interactions and false-positives [20]. Further unresolved questions as to the proportion of 

experimental artifacts in the current interactomes are coming to light as a consequence of 

the low degree of overlap between data curated from multiple high-throughput (as well as 

low-throughput) studies [27].   

Several attempts have been made to characterize the quality of the interactions obtained 

from HTP experiments [23,28,7,24,29,30,31]. Experimental methods aim to limit false 

discovery by performing multiple iterations of the screen, which are time-consuming and 

expensive [29]. Secondary data, such as co-expression, co-localization, ontology correlation, 

topological features and orthology information are often used to further improve 

confidence in predicted interactions [32,33]. In addition to non-trivial correlations between 

these features (i.e. co-expression need not imply interaction), this data is not complete for 

all proteins. Furthermore, as more and more genomes are sequenced, only a fraction of 

proteins will have additional data to complement any experimental HTP study. Techniques 



developed from integrating interactions observed in common across multiple secondary 

experimental assays of an initial network are laborious, expensive and time-consuming. 

Moreover, as suggested by Venkatesan et al. and Cusick et al. [27], the low overlaps 

achieved across different datasets highlight the differences in sampling and biases in 

experimental techniques rather than pinpoint the true interactions.  Further, in many 

experimental methods, the confidence of observations is evaluated for that specific 

technique – they are seldom generalizable. Thus cost-effective and high-confident strategies 

are clearly required to complete the human interactome.  

Recently, a number of algorithms have been developed to predict protein interactions by 

integrating complementary data such as sequence features and structural features [34-

42,12]. Also recently, computational approaches to PPI prediction using structural 

information have been gaining much attention due to the rapid growth of the Protein Data 

Bank (PDB)[32,35,43-65]. An important advantage of structure-based approaches is their 

ability to identify the putative interface, thereby providing more information than any other 

high-throughput method. The common strategy of structure-based methods is to find a 

best-fit template complex structure for the two query sequences; the prediction is then 

based on the similarity of the two proteins to the template complex. Threading based 

approaches extend coverage further “into the twilight zone”, making accurate predictions 

even when there is low sequence similarity (typically <40%) between the query proteins 

and the best-fit template complex [32,66,49]. However, to the best of our knowledge, there 

have been no studies that integrate HTP techniques with PPI prediction algorithms to 

quantitatively address both false-negative (FNR) and false-positive (FPR) issues.   

In this paper, we introduce a general framework to predict, assess and boost confidence in 

individual interactions inferred from a HTP experiment. Our contribution is three-fold– 1) 

we develop a novel computational algorithm to quantitatively predict interactions, given 

just the protein sequences; 2) we show how the algorithm can be used in a general 

framework to quantify confidence in observed interactions; and 3) we demonstrate the 

utility of our structure-based framework in providing biologically significant additional 

information about binding sites, which is not provided by any other HTP method (either 

computational or experimental). We first validate our method on a high-confidence network 

in the recently investigated human Mitogen Activated Protein Kinase (MAPK) interactome 

[67,68]. We experimentally validate predicted high-confidence interactions for the MAPK 



interactome using a complementary assay and show that the concordance between 

prediction and experimental validation is as good as the overlaps achieved in previous 

protocols involving multiple secondary assays [25]. Finally, we show that the interfaces 

predicted by our algorithm are enriched for functionally important sites in the context of 

signaling networks; and utilize this information to hypothesize a novel regulatory 

mechanism involving cross talk between the insulin and stress-response pathways via 

interactions between proteins MAPK6, YWHAZ and FOXO3 proteins. 

 

Results 

The Coev2Net framework for quantifying confidence in protein interactions 

We developed Coev2Net (Fig 1), a framework for assessing confidence in protein 

interactions. To quantify confidence in an interactome, we incorporate high-confidence data 

sources, namely low throughput interactions and structural information. The framework 

gives a confidence score for each interaction, along with a predicted model of the binding 

interface for the proteins (Fig 1).                 

Inputs to the framework are a high-confidence network (usually much smaller than the HTP 

screen) and the interactions identified from the HTP experiment for which one wishes to 

quantify confidence. For every pair of interaction in the HTP screen, Coev2Net provides a 

score to assess their likelihood of being co-evolved from interacting homologous sequences 

(see Methods). To do this, Coev2Net first predicts a likely interface model for the two 

proteins, by threading [69] the sequences onto the best-fit template complex in our library. 

It then computes the likelihood of co-evolution of the two proteins (i.e. of the predicted 

interface) with respect to a probabilistic graphical model induced by the aligned interfaces 

of artificial homologous sequences (Fig 2, see Methods and Supplemental Material). By 

generating artificial sequences, we enrich the interfacial sequence/structure profiles for 

those protein-pairs with sparse interacting-sequence profiles and thus improve protein 

interface scoring accuracy.  Note that this enrichment is carried out for all protein pairs, 

irrespective of the information content in their individual sequence profiles. These PGM 

scores are then input into a classifier trained on a small high-confidence network to 

compute a score between 0 and 1, representing the confidence of our method in that 

interaction (Fig 1). High-scoring interactions can then be investigated further using a 



secondary experimental assay or taken as true positives for subsequent analyses. 

Additionally, since Coev2Net is a structure-based algorithm, it also produces as output a 

putative interface for the interacting pair (Fig 2). This information can be analyzed to design 

site-directed experiments to further characterize the specificity of the interaction.  

Benchmarking Coev2Net 

SCOPPI: We first benchmark Coev2Net on SCOPPI [70], a protein complex database.  The 

database is divided into interacting family pairs for which multiple complexes have been 

solved. Rigorous cross-validation tests on the database indicate that Coev2Net achieves high 

accuracies, thereby validating our approach of modeling interface co-evolution as a high-

dimensional sampling problem (Additional file 1, Fig S3). For the cross-validation tests, we 

considered only those family pairs in SCOPPI that have at least three non-redundant 

(sequence id < 50%) complexes. We randomly selected one as the test complex and used 

the other complexes within our Coev2Net protocol to simulate interacting homologs and 

construct the probabilistic graphical model (Fig 2). We additionally compared Coev2Net’s 

performance on the SCOPPI dataset to another structure-based method, PRISM [45]. PRISM 

first identifies similar templates to two query structures by structural alignment. The final 

prediction is based upon the energy of complex formation calculated by docking these two 

predicted interfaces. We find that Coev2Net’s performance, measured in terms of sensitivity 

and specificity, is much better than PRISM’s on this dataset, (Additional file 1, Fig S3).  

Furthermore, Coev2Net also performs well on SCOPPI family pairs not having more than 

two non-redundant complexes, indicating Coev2Net’s ability to deal with limitations of both 

structural and sequence training data (Additional file 1, Fig S3).  

MAPK interactome validation 

To test the framework’s ability to predict interactions for which there is often no structural 

data available and to assign confidence values to interactions, we re-trained Coev2Net on a 

high-quality human MAPK PPI network [67] and tested it on another high-quality MAPK 

network [68](Fig 3A,B,C). Oddly, these two MAPK networks are almost disjoint with only 6 

overlapping interactions out of 4904 total interactions (Fig 3A). In the Bandyopadhyay set 

[67], we could make predictions for 461 interactions; in the Vinayagam set [68], 1025 

interactions, and in the negatome (PDB-negative set), 330 non-interactors. To check for 

known complexes in the two MAPK networks, for each interaction, we ran BLAST against 



the entire PDB to identify homologous complexes. We were able to find only 22 pairs for 

which a solved homologous complex exists in the PDB (we used a E-value cutoff of 1e-40). 

On the other hand, our threading-based approach can make predictions for ~1500 

interactions in the MAPK networks, indicating that our method extends predictions to those 

pairs for which a clear homologous complex does not exist. The Bandyopadhyay set was 

further divided into a “core” set of interactions (640), of which we could make predictions 

for 173 pairs. The definitions for core set and non-core set were taken as in the original 

citation [67]. This core set of interactions contains high-confidence interactions that are 

conserved in yeast [67].  

To test the accuracy of Coev2Net’s predictions, we first validated our method via 5-fold 

cross-validation on the high-confidence core set of interactions in the Bandyopadhyay set 

(Fig 3C). In addition, to assess the contribution of co-evolutionary profiles for PPI 

predictions, we compared the performance of our method to Struct2Net and a “baseline” 

classifier that is trained on just the threading-based features (no inter-protein features). 

Note that all methods are evaluated on the same dataset (the core set). Fig 3C clearly shows 

that Coev2Net accurately predicts interactions even when only a distant homologous 

complex is available and thus fills the existing gap in structure-based methods for PPI 

prediction. In addition, Fig 3C also shows that including long-distance correlations as in 

Coev2Net aids in PPI prediction as compared to other threading-based methods.  

We trained our final classifier on the entire Bandyopadhyay core data set, and predicted 

interactions in the Vinayagam dataset. For the predictions made for the latter dataset, we 

found that the experimentally validated coverage of our method (~55% with a confidence-

score cutoff of 0.6) is significantly higher than that reported by other prediction methods 

based on conservation, genomic data, GO annotation and literature extractions (~14% to 

~28%) [29], although each method was evaluated on a different network. Here, coverage is 

defined as the percentage of total predicted interactions for which we make a positive 

prediction and that were validated experimentally in the Y2H screen (571 predicted 

positive out of 1025 in the Vinayagam dataset). The cutoff of 0.6 was chosen since it 

corresponds to the maximum specificity and sensitivity of the logistic-regression classifier 

on the Bandyopadhyay core dataset.  

Moreover, our predicted confidence scores are highly correlated with the experimental 

observation frequencies of Y2H screens on this network (Vinayagam dataset). To assess 



significance, we divided our predictions into high confidence and low confidence based on 

the probability cutoff of 0.6. To categorize interactions as true positive (TP) or true negative 

(TN) in the Y2H screens, we assumed the cutoffs employed in Schwartz et al. (for a False 

Discovery Rate FDR < 5%, TP interactions should be observed at least twice when tested 

with <5 independent assays, and at least three times when tested with more assays)[29]. 

We then populated a 2x2 contingency table to test for association between our predicted 

label (interacting or non-interacting) and experimentally predicted label. We find that the 

predicted interactions correlate (P-value < 0.01, Fisher’s test) with those deemed likely true 

positives from an experimental standpoint. Encouragingly, the percentage of our 

framework’s predicted TP interactions that are confirmed positive (from an experimental 

standpoint) in the Vinayagam dataset is roughly 52% (294 TP, 571 predicted positive, a 

two-fold increase compared to previous methods on Y2H retesting of computational 

predictions [29].  Alternatively, training Coev2Net on the high confidence network in the 

Vinayagam dataset and testing it on the Bandyopadhyay core network yields similar results. 

By predicting only a fraction of interactions with high confidence, Coev2Net enables us to 

focus on only the most likely interactions, enabling a more accurate understanding of the 

biology (Fig 3B). 

Experimental validation of predictions 

The confidence scores given by our framework can be used to design additional 

experiments to enhance the quality of the initial interactome. We tested 19 randomly 

chosen high confidence interactions (confidence score > 0.6) using a complementary 

assay (LUMIER)[71]. Each pair, along with a control, was tested at least 3 times using 

the LUMIER assay. To confirm an interaction, the average result (i.e. fold change in 

luciferase intensity [RLU] as measured in a TECAN Infinite M200 luminescence plate 

reader) across the repeats had to be greater than 1.5 times the control. 14 interactions of 

the 19 interactions exhibited luciferase intensity greater than 1.5 times the control (Fig 

3D). Additionally, if the repeat experiments were too variable to confidently assess the 

interaction (as measured using a z-score), the interaction pair was discarded. The z-score 

is calculated as:  

 



 
Eight out of the 19 interactions were discarded in this way as they registered a z-score of 

less than 1.5 and were deemed too variable. For additional experimental details we refer 

the readers to a more comprehensive interactome mapping analysis in [72]. Notably, 10 out 

of the remaining 11 were confirmed as true interactions i.e. registering average intensity 

above 1.5 times the control. Overlaps achieved by our method compare favorably with 

previous approaches, such as Braun et al. [25], in which an initial positive reference set 

(PRS) was re-tested experimentally using a LUMIER assay (Table 1). Furthermore, we 

evaluated the sequence identities between the interacting sequences and the templates 

used for predicting their interaction (see Table 1, Supp. Info). Interestingly, we find that all 

of them have a medium to low average sequence identity (15-30%), indicating that 

Coev2Net yields accurate predictions even in the “twilight zone” of sequence identities, 

where traditional homology methods usually fail. For example, IBIS [73], another 

homology/structure-based method can detect only 2 pairs from the 10 detected by 

Coev2Net and experimentally validated by the LUMIER assay.   

Abundance of missense SNPs at predicted interfaces  

In addition to the confidence scores, Coev2Net also provides a putative interface for the 

interaction. These interfaces can yield novel mechanistic insights into the protein-protein 

interaction and provide hypotheses about disease-associated mutations that occur at the 

interface. Missense SNPs occurring at the interface can potentially disrupt the interaction 

between the proteins, leading to abnormal functioning of the cell. We analyzed the 

predicted interfaces for existence of PolyPhen2 annotated missense mutations in dbSNP 

(build 131) [74]. PolyPhen2 classifies a SNP as “benign”, “probably damaging”, “possibly 

damaging” or “unknown” based on various features including conservation score, 

monomeric structure score (when available) and physicochemical properties [75,76]. It 

does not however account for SNPs occurring in potential interacting regions. Interestingly, 

SNPs annotated as damaging by PolyPhen2 are preferentially observed at the interface as 

compared to non-interfaces (P = 0.0075, Fisher’s exact test, Fig 4A). Furthermore, if we take 

into account the number of interface and non-interface sites, we find that the predicted 

interfaces are enriched for damaging SNPs as compared to the rest of the protein (P < 7e-8, 

Fisher exact test). The same analysis with SNPs classified as benign by PolyPhen2 does not 

show up as highly significant (P = 0.06). We further analyzed the distribution of the SNPs in 

terms of their density at the interface and non-interface. Here again, we find that damaging 



SNPs are preferentially located on the interface. We find that the average density of 

damaging SNPs at the predicted interfaces is significantly higher than their density at non-

interface positions (Fig 4B; P < 1e-10, Mann-Whitney test); a bias also observed by Wang et 

al. recently [63].  For benign SNPs, the average density at the interface is lower than that at 

non-interfaces (Fig 4B; P < 1e-10, Mann-Whitney test). These analyses show that there is an 

evolutionary pressure to admit only benign SNPs at the interface, since any potentially 

damaging SNP will hinder the interaction.   

To investigate the structural distribution of annotated mutations, we analyzed somatic 

mutations characterized in cancer to see if there is any preference for their location on the 

protein. We analyzed annotated mutations in the coding region deposited in the Cosmic 

database for their predicted location [77]. We only considered mutations that are annotated 

as either synonymous or missense.  Interestingly, for these mutations we find that missense 

mutations are more prevalent on average at the PPI interface than synonymous mutations 

(P < 10e-20, Mann-Whitney test) (Fig 4C). This suggests that these mutations might be 

responsible for disruption of protein-protein interactions and the aberrant molecular 

signaling associated with cancer. 

Finally, we looked at the predicted locations for some of the un-annotated mutations in 

kinases (from the MoKCa database [78]. As an example, we considered the BRAF protein as 

it contained the highest number of annotated mutations in the database. Coev2Net predicts 

an interaction between BRAF and PAK2, using the template structure 1G3N (chains E and 

F). Fig 5A shows the predicted interface for this interaction, with the annotated (magenta) 

and un-annotated (dark blue) mutations indicated. The presence of these mutations at the 

interface of the interacting proteins gives us an added insight into the investigation of such 

variations. Further study using this information can provide mechanistic details about how 

such mutations disrupt normal cellular signaling.  

Novel potential cross-talk regulatory mechanism 

Phosphorylation sites have been observed to be enriched at interfaces in solved structures 

[79]. This observation has mechanistic implications as the PPI can be used as an additional 

regulatory mechanism for phosphorylation, or the interaction could be a precursor to 

phosphorylation. An example for such a mechanism is found in the signaling protein 

YWHAZ [80]. Its phosphorylation is regulated by its dimerization, which buries the 



phospho-sites on YWHAZ [81]. Our predictions revealed an interesting observation that 

suggests similar regulatory mechanisms in the MAPK interactome. Coev2Net predicts an 

interaction between MAPK6 and YWHAZ. Both are important signaling proteins, with much 

known about YWHAZ, including the experimental observation that MAPK8 regulates 

phosphorylation at S184 [82]. Relatively less is known about MAPK6‘s function and its 

substrates [83]. However, it is known that S189 is a phospho-site regulated by PAK1, PAK2 

and PAK3 [84,85,86]. Interestingly, we found that the phosphorylation sites for both MAPK6 

(S189) and YWHAZ (S184) lie within the predicted interface for the interaction (Fig 5B). 

This structural observation could imply that the interaction regulates downstream activities 

of MAPK6 and YWHAZ by controlling their phosphorylation. The most likely mechanism is 

that MAPK6 phosphorylates YWHAZ, thereby preventing its dimerization and regulating 

downstream activities of YWHAZ. Additionally, Coev2Net also predicts an interaction 

between MAPK6 and FOXO3. From a signaling context, these observations suggest a 

possible mechanism of cross talk between the MAPK and insulin pathways. Analysis and 

validation of such a hypothesis is however beyond the scope of the present study.  

 

Discussion 

We have proposed a novel structure-based computational approach to identify protein-

protein interactions on a genome-wide scale.  Using structural features, we have 

demonstrated that our method can not only identify true-interactions better than previous 

approaches, but also provide key biological insights that are absent from HTP experiments. 

While it has been shown previously for some families that residues in and around the 

interface have correlated evolutionary histories, extracting such robust correlation signals 

for predictive purposes on a genome scale has remained difficult due to limited known 

interacting homologs. In the context of homology search for only monomers, enriching a 

multiple sequence alignment with artificial sequences has proven to be effective in the case 

of limited homologs [87,88]. Utilizing a statistical model for constructing evolutionarily 

correlated interacting homologs for a given interacting pair of proteins, we are able to 

simulate homologous sequences and predict PPIs from correlations at the interface of these 

homologs. The excellent performance of our method helps corroborate the hypothesis of 

residue-level correlations for a wide variety of protein-protein interactions and provides an 

efficient way of using these correlations for predictive purposes.  



 

As more and more HTP data for mapping the interactome are gathered, there would be a 

necessary demand for automatic protocols to evaluate the data quality and estimate the 

confidence in individual interactions. In particular, transient interactions have been 

notoriously difficult to elucidate and validate. We have shown that confidence in PPIs 

investigated through high throughput techniques can be quantified and enhanced by our 

proposed complementary structure-based PPI prediction algorithm. Our PPI predictions on 

recent HTP human MAPK interactomes and further experimental validations have indicated 

the efficacy of our predicted confidence scores. Moreover, since our framework requires 

only the sequences of the two candidate proteins, it can be used as a complementary feature 

to other methods that rely on additional features [31,89]. 

  

Limited studies have been undertaken to link structural features to genome-wide 

interactomes to gain a mechanistic understanding of underlying biological processes. Our 

threading-based approach enables us to extend coverage of structure-based studies further 

than that possible by homology models (see section MAPK interactome validation). As a 

result, the predicted structures are more reliable and provide a sound basis for mechanistic 

hypotheses. We provide an anecdotal example by analyzing the distribution of annotated 

missense SNPs in our predicted models. In agreement with a recent study [63], we show 

that such mutations are enriched at the interfaces. Furthermore, detailed analysis of 

phosphorylation sites enables us to propose a cross-talk mechanism involving an atypical 

kinase, MAPK6. Predictions made by our model for the potential interactors of MAPK6 

provide the basis for further exploration of the role of this relatively less-studied kinase.  

 

Conventional homology-based methods such as interPrets [44], IBIS [73] and PRISM [45] 

perform well when a similar template is found in the PDB. Threading based-methods 

provide predictions even when such conventional methods cannot find a suitable template. 

Furthermore, as we show in this paper, accuracy achieved by our threading-based method 

is the best amongst current structure-based methods. Coev2Net acts as a complement to 

conventional homology methods whenever a clear template for prediction is not available 

and expands threading methods by incorporating coevolution of protein interfaces. 

However, performance of threading-based techniques has been shown to decline when the 

query sequences are distantly related to the template (sequence identities < 15-20%) 



[49,65]. While we currently use RAPTOR for identifying the putative interface, we hope to 

further push this limit by integrating new threading programs like RAPTORX [90] and 

iWRAP [49], into Coev2Net. While we encode our interface profile as a spanning-tree based 

graphical model, we believe this is a simplistic approximation of the reality. More 

complicated graphs could potentially be required for particular families of interacting 

proteins. Finally, we note that transient interactions are notoriously difficult to predict 

using structure-based interactions. Our validation using a technique (LUMIER) that can 

detect even transient interactions provides some confidence in predictions of transient 

interactions by Coev2Net. 

 

Methods 

Coev2Net algorithm: 

 The Coev2Net algorithm can be roughly divided into three distinct stages, 1) identification 

of the putative binding interface, 2) evaluation of the compatibility of the interface with an 

interface co-evolution based model (see “Construction of the interface profile through 

simulated co-evolution” below), and 3) evaluation of the confidence score for the 

interaction.  

Identification of the putative interface: The two query sequences are each threaded against a 

complex template library to search for the best template. We use a top-performing threader 

program “RAPTOR” [69,90] to look for the best template match. Given a set of potential 

template matches, the best match is selected based on the z-score of the alignment. In order 

to evaluate the putative interface implied by the alignment, we calculate its compatibility 

with respect to the co-evolutionary profile for that interface.  

Evaluating the interface: The predicted interface is evaluated by computing the log-

likelihood of the interface residues with respect to the interface profiles described below– a 

probabilistic graphical model (PGM) for interacting pairs (“positive”) and another graphical 

model representing background correlations (“negative”). A high log-likelihood with 

respect to the “positive” PGM implies that the protein sequences show co-evolution at the 

interface, compatible with the model and are hence likely to interact.  



Computing confidence score: Once we have the compatibility scores for the predicted 

interface, we use these as features to predict our confidence in the interaction. A logistic-

regression classifier is trained on a high-confidence network, and is used to predict our 

confidence score for the interaction, which is the output of the classifier. Both alignment 

features (from stage 1: Identification of interface) and interface features (from stage 2: 

Evaluating the interface) are used as features in the classifier. If p is the probability of 

interaction (or our confidence score), then: 

 

where, Xi are the alignment features for each protein in the interacting pair (these include 

sequence scores, secondary structure scores and protein lengths); Yi is the size of the 

interface; L+ is the log-likelihood score of the predicted interface with respect to the positive 

tree, and L- the log-likelihood score of the predicted interface with respect to the negative 

tree. 

Construction of the interface profile through simulated co-evolution 

To construct an interface profile for a SCOPPI family, which consists of a family of protein 

complexes; we exploit the biological intuition that interacting proteins exhibit co-evolution 

at the interface. This co-evolution has been detected even in residues within 10-12 

Angstroms at the interface [62,64,91-94]. In Coev2Net, the interface profile is a probabilistic 

graphical model (PGM), pre-computed for each SCOPPI family, and encodes the most 

significant pattern of interface correlations exhibited by the interacting members of the 

SCOPPI family. This model is computed by formulating interface co-evolution as a high-

dimensional sampling problem (see Supplement for further details). The three main steps in 

this simulation are: 

1) Seeding the co-evolution: We start the simulation from known complexes within a 

SCOPPI family. We first align the interfaces using a contact map alignment program, 

CMAPi [95], CMAPi employs a contact map representation to efficiently align 

multiple interfaces and thereby improves alignments as compared to other 

sequence and structure-based techniques. The simulation is performed on each 

aligned interface.  



2) Simulating co-evolution for an interface: For each pair of aligned seed sequences 

(full proteins forming the complex), additional sequences are constructed via 

random mutations according to a probability distribution (Additional file 1, Fig S1) 

based on paired positions within interfaces of complexes. To perform a mutation at 

a contact, we first randomly fix one amino acid in the contact, and sample the 

contacting amino acid from a distribution conditioned on the fixed amino acid (see 

Additional file 1, Fig S2 for a schematic). The new contact thus has one amino acid as 

before, and the contacting amino acid mutated according to a conditional 

probability distribution. Each contact is treated independently, with 5% of the 

interface contacts mutated at each step. For non-contacting residues mutations are 

performed independently in the two proteins according to the BLOSUM62 matrix. 

Again, 5% of the non-contacting residues are mutated in one step. The percentage of 

mutations to carry out in one step (i.e. 5%) was chosen based on previous studies 

on simulated evolution for remote homolog detection [96].  

The new sequences are first aligned to the hidden Markov models (HMMs) 

representing the corresponding protein families, and the alignment scores 

computed. They are then accepted or rejected in a stochastic manner, based on their 

joint fitness score. The mutation and stochastic selection of interacting sequences 

can be viewed as a Markov Chain Monte Carlo (MCMC) algorithm [97] for a high-

dimensional sampling problem – we rigorously prove this correspondence in the 

supplemental methods.   

3) Learning the PGM: Once we have sufficient sequences (i.e. after the MCMC 

converges), we encode the pairwise correlations observed in these “interacting” 

sequences using a probabilistic graphical model (PGM). Our motivation for 

introducing a PGM are twofold: 1) analogous to a sequence profile, a PGM is a 

“profile” that can be used to score predicted interfaces, and 2) to explicitly capture 

long-distance correlations (non-contact-based) at or near the interface residues. We 

select 1000 interacting sequences per training complex as our interacting set (to 

avoid large sample-sample fluctuations, we select close to 2500 sequences for 

SCOPPI families having only one training complex). To model the correlations 

between residues of these interacting proteins, we use the Sanghavi-Tan-Willsky 

algorithm [98] to construct two trees - one for the simulated interacting proteins 

(“positive”) and one for background correlations (“negative”). These two trees are 



our interface profiles for the particular SCOPPI family and can be pre-computed 

before making any predictions. We restricted ourselves to spanning trees for ease of 

learning and inference. In fact, other inference methods, such as belief propagation, 

would work on a loopy graph (i.e. the loopy network of contacts at the interface) but 

their behavior is not easy to control and very sensitive to the initialization. Note that 

our profiles of the interface residues are different from the HMM ones since our 

interface profiles are purposely computed from only interacting sequences; the 

HMM is constructed from independent sequences that do not necessarily interact.     

 

Evaluation of the classifiers: 

The individual methods were evaluated based on their ability to correctly predict true-

positives and true-negatives. To do this, we plot receiver operator characteristic (ROC) 

curves for each method. In our ROC curves, sensitivity is defined as true-positives/(true-

positives+false-negatives) and specificity is defined as true-negatives/(true-negatives+false-

positives). For a high-confidence true-positive and true-negative dataset, we perform 5-fold 

cross-validation tests for each method (Coev2Net, Struct2Net and Baseline), and plot the 

average sensitivities (at particular specificities) for these 5 runs. For Coev2Net, we run the 

MCMC sampling 5 times, and average the performance across these 25 curves (5 MCMC x 5 

CV). To compare against interPrets, we used a cutoff on the z-score computed by the 

algorithm to classify a prediction as positive or negative. Since there is no training required 

here, there was no need for a cross-validation. For the computationally intensive IBIS [73], 

we compared our predictions on the 10 pairs validated using the LUMIER assay.  
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Figure legends 

Fig 1. Framework for assessing confidence in a HTP PPI screen. Coev2Net, trained on a 

high-quality PPI network, is able to assign structure-based confidence scores for HTP PPI 

networks. Each node represents a protein and each edge the putative interaction between 

the two proteins. The thickness of an edge describes structure-based confidences of 

putative PPIs. 

 

Fig 2. Flowchart of Coev2Net. Left: MCMC sampling to generate synthetic homologous 

sequences for each complex template. Right: 1) For given query protein pairs, the best 

template (from the structural library) is identified by protein threading; 2) structural and 

sequence features are extracted from the interfacial alignment and residue correlations 

scored w.r.t. the profile PGM; and 3) a classifier gives the probability of interaction for the 

query protein pair. 



Fig 3. A) Overlap of the Vinayagam (blue) and Bandyopadhyay (red) datasets (left). The 

study by Bandyopadhyay et al. reveals 2269 interactions with 641 “core” interactions 

supported by multiple lines of evidence, whereas the Vinayagam dataset has 2626 

interactions connecting 1126 proteins. Differences in the two experimental techniques are 

highlighted by the fact that only 170 nodes and 6 interactions overlap in the two sets. B) 

Coev2Net predicted high-confidence network is shown on the right. Edge colors correspond 

to the dataset they come from. MAPK6 has the highest degree, and its label is shown 

explicitly. C) Comparisons of performance on MAPK network for Coev2Net and Struct2Net 

(iWRAP+DBLRAP) [49,32,66] in terms of sensitivity and specificity. Coev2Net performs 

much better than previous methods on this dataset (core network of Bandyopadhyay et al.), 

and its performance is robust with respect to the randomness in MCMC sampling. The 

classifier (Fig 2) is trained and tested via 5-fold cross-validation on the core network. The 

MCMC procedure is repeated 5 times to assess robustness of the predictions and the 

corresponding error bars are indicated. ‘Baseline’ method represents a logistic regression 

classifier with just the alignment features and no PPI (inter-protein) features. D) 

Experimental validation of predicted high-confidence interactions using LUMIER assay. 

Typically a fold increase of 1.5 is considered as a true positive.  

Fig 4. Predicted interfaces are enriched for SNPs in the Coev2Net predicted high-confidence 

MAPK network. A) Relative distribution of PolyPhen annotated mutations at the interface 

and non-interface. B) SNP (PolyPhen annotated) prevalence at the interface and non-

interface. C) Somatic mutations characterized as “missense” preferentially fall on the 

interface (bottom). The white circles represent corresponding means. Error bars represent 

the 75%-25% data range. 

Fig 5. A) Predicted interface for the interaction between BRAF (light blue) and PAK2 (red 

surface). Cancer associated mutations that are annotated are shown in magenta. In dark 

blue we indicate mutations that are predicted to be associated with cancer but with no 

current annotations. Rest of the template structure is shown in gray. Mutations were taken 

from MoKCa database [78]. B) Predicted interface for the interaction between MAPK6 

(yellow) and YWHAZ (cyan). Phosphorylation sites on the proteins are indicated in red 

(S189 for MAPK6 and S184 for YWHAZ). The template used for the prediction was 1F5Q 

(chains A and B). 

 



 

 

Yeast strains 
implementation 

#validated 
(LUMIER) 

Y2H PPIs %overlap 

Y strain 2m 1 reporter 
1mM_3-AT (Braun et al.) 

19 33 57 

Y strain 2m 2 reporters 
1mM_3-AT (Braun et al.) 

13 22 59 

Y strain CEN 1 reporter 
1mM_3-AT (Braun et al.) 

17 23 74 

MaV CEN 2 reporters 20 
mM_3-AT (Braun et al.) 

9 14 64 

Our prediction 14 19 74 

Our prediction* 10 11 91 

 

Table 1. Comparison of overlaps achieved by Braun et al. and our method when some of the 

initial Y2H interaction pairs are re-tested using LUMIER assay. * These pairs have LUMIER 

assay z-scores > 1.5.   

 

Abbreviations 

coAP, co-affinity purification; coIP, co-immunoprecipitation; FDR, false-discovery rate; FNR, false-

negative rate; FPR, false-positive rate; GO, gene ontology; HMM, Hidden Markov Model; HTP, high-

throughput; LUMIER, luminescence-based mammalian interactome  mapping; MAPK, mitogen-

activated protein kinase; MCMC, Markov chain Monte Carlo; PGM, probabilistic graphical model; PPI, 

protein-protein interaction; ROC, receiver operator characteristics; SNP, single nucleotide 

polymorphism; TN, true negative; TP, true positive; Y2H, yeast-2-hybrid. 
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with other methods.   
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