# SUPPLEMENTARY INFORMATION

### **Detailed Online Methods**

#### Fly stocks

A 3xFLAG-HA tag was inserted at the N-terminus of AGO2-RB into BAC RP98-21A13 via bacterial Red/ET recombination (Gene Bridges GmbH). A 13.9kb AvrII/XhoI fragment of the modified BAC encompassing the AGO2 locus including parts of flanking genes (chr3L coordinates: 15,544,405-15,558,309) was cloned into pCasper4 (XbaI/XhoI). Transgenic flies were generated at Bestgene Inc. Expression of tagged AGO2 in embryos, ovaries and whole flies was verified in multiple lines by western blotting using a monoclonal anti-HA-Peroxidase antibody (1:500; Cat.: 12013819001; Roche). *dcr-2<sup>L811Fsx</sup>* flies were a kind gift of Richard Carthew <sup>6</sup>, AGO2<sup>414</sup> flies were a kind gift of Haruhiko Siomi <sup>30</sup>, *loqs<sup>100791</sup>* flies were a kind gift of Phil Zamore<sup>1</sup> and *r2d2<sup>1</sup>* flies were a kind gift of Dean Smith<sup>14</sup>. As wild-type fly stocks, #2057 From Bloomington (Celera sequencing strain) and OregonR flies were used.

### **Small RNA libraries**

Twenty-six 10 cm plates with 50-70% confluent Schneider cells were transfected with pCasper FLAG-HA-AGO2 using Calcium Phosphate, harvested after 36h and lysed in buffer A (20 mM HEPES pH7.0, 150 mM NaCl, 2.5 mM MgCl<sub>2</sub>, 0.3% Triton, 30% glycerol) supplemented with 1 mM PMSF and protease inhibitors (Complete; Roche). Cleared extract was split and incubated with rabbit polyclonal AGO1 antibody (1:20; lot: 113754; Abcam) or mouse anti-FLAG<sup>®</sup> M2-Agarose (1:25; SIGMA) for 4 hours at 4°C. AGO1 antibodies were isolated by adding proteinG beads (1:10; Roche) for 1 hour. Beads were washed 6 times each 10 minutes in buffer B (30 mM HEPES pH7.4, 800 mM NaCl, 2 mM MgCl<sub>2</sub>; 0.1% NP-40) which contained equal supplements as buffer A. The immunoprecipitation was analyzed by western blotting using anti-AGO1 (1:2000: Abcam) and anti-HA-Peroxidase (1:500; Cat.: 12013819001; Roche). AGO1and AGO2-associated RNAs were isolated with Phenol/Chloroform and ethanol precipitated. For the ovarian AGO2 IP library ~500 mg ovaries from transgenic FLAG-HA-AGO2 flies were dissected and lysed mechanically in buffer A. AGO2 complexes and associated RNAs were purified as above.

AGO1 and AGO2 bound small RNAs as well as small RNAs from total RNA were cloned as described <sup>12</sup> (detailed protocol available upon request). The following small RNA libraries from total RNA were prepared for this study:

18-28 nt from ovaries of the Celera sequenced strain (Bloom. # 2057)

18-28 nt from ovaries of *dcr-2<sup>L811Fsx</sup>* homozygous flies

18-28 nt from *loqs*<sup>f00791</sup> homozygous flies

18-24 nt from testis of OregonR flies.

Libraries were sequenced in house using the Illumina platform. Published libraries used in this study were a 16-26 nt S2 cell total RNA library <sup>15</sup> and Piwi/Aub/AGO3 IP libraries from ovaries <sup>12</sup>.

#### **Bioinformatic analysis of small RNA libraries**

Small RNA sequences were matched to the *Drosophila* release 5 genome and genomes of *Drosophila* C virus, Flock house virus and Cricket paralysis virus. Only reads matching the fly genome 100% and viral genomes with up to 3 mismatches were used for further analysis. For annotations we used Flybase for protein-coding genes, UCSC for non-coding RNAs and transposons/repeats and the most recent miRNA catalog.<sup>15, 33</sup>.

siRNA clusters were extracted by mapping all 20-22nt long RNAs from the AGO2-IP libraries to the genome (only uniquely mapping RNAs were used) and retaining 200 nt windows, which contained at least 3 distinct small RNAs. Windows separated by max. 200 nt were fused and those with more than 40 unique reads were sorted after the density of siRNAs per bp.

For the transposon analysis, 20-22 nt AGO2 bound RNAs from ovaries and S2 cells were mapped onto the Repbase collection of transposons <sup>34</sup> with up to 3 mismatches to construct heatmaps indicating cloning frequency and strand bias of siRNAs. For the latter analysis only siRNAs unambiguously mapped to one strand were considered.

### Cleavage site mapping for endo-siRNA targets

Wild-type testes were dissected on ice into 1x PBS. Total RNA was isolated using Trizol (Invitrogen) according to the manufacturer's protocol. 5 µg total RNA were used as starting material. Ligation of an RNA adaptor, reverse transcription using the GeneRacer oligo (dT) primer and 5' RACE-PCR were performed according to the manufacturer's instructions (GeneRacer kit, Invitrogen). 5' RACE-PCR was carried out using the GeneRacer 5' primer (5'-CGACTGGAGCACGAGGACACTGA-3') and a mus308 gene-specific reverse primer (5'-TGCTTTGCAGAGTCGAAGCTGATTG-3'), and followed by one round GeneRacer 5' of nested PCR using the nested primer (5'-GGACACTGACATGGACTGAAGGAGTA-3') and a nested primer specific to mus308 (5'-CCGCTAGCTCTACCAAACTGGTGAT-3'). PCR products were gel purified and cloned into pCR<sup>®</sup>4Blunt-TOPO<sup>®</sup> (Invitrogen). 22 clones were sequenced with T7 (5'-GTAATACGACTCACTATAGGGC-3') and T3 (5'-AATTAACCCTCACTAAAGGG-3') primer, and subjected to further analysis.

### dsRNA treatment of Schneider cells

~  $3x10^{6}$  S2-NP cells were soaked in 1.5mL serum-free Schneider's medium containing 10 ug dsRNAs in 6-well plates, and 3mL serum-containing medium was added 45 minutes later. After 4 days of initial dsRNA treatment, cells were treated with a second round of dsRNAs using the same procedure and were harvested another 4 days later. Total RNA was extracted with Trizol (Invitrogen). Sequences of the primers for generating dsRNAs are listed below.

### siRNA reporter constructs

A Sall/BgIII fragment from pGL3-Basic (Promega) was cloned to pRmHa-3 using Sall/BamHI (pMT-Firefly-long). The coding region of the *Renilla luciferase* gene was amplified by PCR and cloned into pRmHa-3 using BamHI/EcoRI sites (pMT-Renilla). A pair of oligos containing two perfect binding sites for si1\_1,

si1\_2 or si2 were annealed and cloned into pMT-Renilla (BamHI/Sall) to generate sensor constructs (Fig. S13).

Transfection was performed in a 384-well plate format. For each well, ~100 ng plasmid DNA (5 ng pMT-Renilla, 20 ng pMT-Renilla-si1 1, 50 ng pMTsi1 2 or 100 ng pMT-si2, 5 ng pMT-Firefly-long, and corresponding amounts of pRmHa-3 serving as carrier DNA) and ~80 ng dsRNA were mixed with 0.8 µl Enhancer in 15  $\mu$ l EC (Qiagen) and incubated at room temperature for 5 minutes. Then 0.35 µl of Effectene reagent was added and the mixture was immediately dispensed into each well containing dsRNA. After incubation at room temperature for 10 minutes, 40 µl S2-NP cells (10<sup>6</sup> cells/mL) were dispensed into Cells were induced with 200 micromolar CuSO<sub>4</sub> 132 hours post the well. transfection and luciferase assays were performed 36 hours later using DualGlo reagents (Promega). For each well, the reporter activity was calculated as the ratio of *Renilla* luciferase to firefly luciferase. Each data point was normalized against the data points where dsRNA against LacZ was transfected. Presented are average results with standard deviation (n=3).

### Northern blotting

Total RNA was isolated using Trizol (Invitrogen). 30 ug RNA were separated on a 15% denaturing polyacrylamide gel and transferred onto a Hybond-N+ membrane (Amersham Biosciences) in 1x TBE. The RNA was UV crosslinked to the membrane and pre-hybridized in ULTRAhyb<sup>™</sup> buffer (Ambion) for 1 hour. DNA probes complementary to the indicated siRNAs, bantam, and 2S RNA were 5' radiolabeled and added to the hybridization buffer (hybridization over night at 37°C). Membranes were washed 4-6 times in 1x SSC with 0.1% SDS at 37°C and exposed to PhosphoImager screens. Probes were stripped by boiling the membrane twice in 0.2x SSC containing 0.1% SDS in a microwave.

### **Quantitative real-time PCR**

Ovaries and testis from homozygous or heterozygous flies were dissected on ice into 1x PBS. Total RNA of dissected tissues or S2 cells was extracted using Trizol (Invitrogen). RNA was treated with DNase I Amplification Grade (Invitrogen) according to the manufacturer's instructions. cDNA was prepared by reverse transcription using SuperScript<sup>™</sup> III Reverse Transcriptase (Invitrogen) and random hexamer primer. gRT-PCR was carried out using SYBR<sup>®</sup> GREEN PCR Master Mix (Applied Biosystems) and a Chromo4 Real-Time PCR Detector  $C_T$  values were calculated within the log-linear phase of the (BioRad). amplification curve using the Opticon Monitor 3.1.32 software (BioRad). Quantification was normalized to the endogenous ribosomal protein rp49 and relative expression levels were calculated using the following equation: A = [Ct(ref)-Ct(ref-control)]-[Ct(sample)-Ct(sample-control)] 1.8 Transposon analysis was carried out with four biological replicates (individually shown; error bars indicate technical replicates), siRNA target analysis was carried out with three biological replicates. Oligonucleotide primers used in this study are listed below.

### **DNA Oligonucleotides**

#### dsRNA generating PCR primers:

| T7-Dicer1-F-14     | TAATACGACTCACTATAGGGTGCGACAACAATCTGC         |
|--------------------|----------------------------------------------|
| T7-Dicer1-R-565    | TAATACGACTCACTATAGGGTCAGTTGCTGCAGCTCAC       |
| T7-Dicer2-F-5      | TAATACGACTCACTATAGGGAAGATGTGGAAATCAAGCC      |
| T7-Dicer2-R-555    | TAATACGACTCACTATAGGGCCACGTTCGTAATTTC         |
| T7-Drosha-F-3356   | TAATACGACTCACTATAGGGTGAATCAGGACTGGAACG       |
| T7-Drosha-R-3910   | TAATACGACTCACTATAGGGAGCCATCGCTATCACTGC       |
| T7-Exportin5-F-55  | TAATACGACTCACTATAGGGATCTAGTCATGAACCCG        |
| T7-Exportin5-R-623 | TAATACGACTCACTATAGGGAACGCAGTCACATGCTGC       |
| T7-Ago1-F1225      | TAATACGACTCACTATAGGGAACGGACAGACCGTAGAG       |
| T7-Ago1-R1858      | TAATACGACTCACTATAGGGTGGCGTACTTACAGAAGC       |
| T7-Ago2-F2211      | TAATACGACTCACTATAGGGAGCCACATCGACGAACG        |
| T7-Ago2-R2855      | TAATACGACTCACTATAGGGCGAGGATCATCCTTGATC       |
| T7-R2D2-PZ-F       | TAATACGACTCACTATAGGGCATACACGGCTTGATGAAGGATTC |
| T7-R2D2-PZ-R       | TAATACGACTCACTATAGGGTTGCTTGTGCTCGCTACTTGC    |
| T7-Pasha-F452      | TAATACGACTCACTATAGGGACTTTGAAGTCCTACCCG       |
| T7-Pasha-R1177     | TAATACGACTCACTATAGGGCTCCTTGAACTCATAGG        |
| T7-Loqs-F-1        | TAATACGACTCACTATAGGGATGGACCAGGAGAATTTCC      |
| T7-Loqs-R-540      | TAATACGACTCACTATAGGGAAGGGCGTATCCTTGTC        |
| T7-LacZ-F          | TAATACGACTCACTATAGGGCATTATCCGAACCATCC        |
| T7-LacZ-R          | TAATACGACTCACTATAGGGCAGAACTGGCGATCGTTCG      |
|                    |                                              |

### siRNA sensor oligos

Bam-esi-1 2-S2-2P-F

GATCCCAACAGTTTATTTACTTGGAGGCAACATAATCAAATGAACTGAGGGTTACTTGGAGG CAACATAATCAG Sal-esi-1 2-S2-2P-R TCGACTGATTATGTTGCCTCCAAGTAACCCTCAGTTCATTTGATTATGTTGCCTCCAAGTAAA TAAACTGTTGG Bam-esi-2 1-S2-2P-F GATCCCAACAGTTTATTGGAGCGAACTTGTTGGAGTCAAAATGAACTGAGGGTGGAGCGAA CTTGTTGGAGTCAAG Sal-esi-2 1-S2-2P-R TCGACTTGACTCCAACAAGTTCGCTCCACCCTCAGTTCATTTTGACTCCAACAAGTTCGCTCC AATAAACTGTTGG Bam-esi-1 3-S2-2P-F GATCCCAACAGTTTATTCATTTGATCCATAGTTTCCCGAATGAACTGAGGGTCATTTGATCCA TAGTTTCCCGG Sal-esi-1 3-S2-2P-R TCGACCGGGAAACTATGGATCAAATGACCCTCAGTTCATTCGGGAAACTATGGATCAAATGA ATAAACTGTTGG Bam-esi-1\_1\_-S2-2P-F GATCCCAACAGTTTATTGCCAAGGTACGTGGTCGACCGAAATGAACTGAGGGTGCCAAGGT ACGTGGTCGACCGAG Sal-esi-1 1\_BC36-S2-2P-R TCGACTCGGTCGACCACGTACCTTGGCACCCTCAGTTCATTTCGGTCGACCACGTACCTTG GCAATAAACTGTTGG Bam- mus308 target-S2-2P-F GATCCCAACAGTTTATTGGGCGAGCTTGTTGGAGTCAGAATGAACTGAGGGTGGGCGAGCT TGTTGGAGTCAGG Sal- mus308 target-S2-2P-R TCGACCTGACTCCAACAAGCTCGCCCACCCTCAGTTCATTCTGACTCCAACAAGCTCGCCCA ATAAACTGTTGG

# Northern probes:

| esi-2.1:    | GGAGCGAACTTGTTGGAGTCAA         |
|-------------|--------------------------------|
| esi-1.1:    | GCCAAGGTACGTGGTCGACCGA         |
| esi-1.2:    | CATTTGATCCATAGTTTCCCG          |
| miR-bantam: | AATCAGCTTTCAAAATGATCTCA        |
| 2S rRNA     | TACAACCCTCAACCATATGTAGTCCAAGCA |

# **Quantitative real-time PCR:**

### Transposon analysis:

| rp49_fwd:      | ATGACCATCCGCCCAGCATAC        |
|----------------|------------------------------|
| rp49 rev:      | CTGCATGAGCAGGACCTCCAG        |
| GAPDH2_fwd:    | TGATGAAATTAAGGCCAAGGTTCAGGA  |
| GAPDH2_rev:    | TCGTTGTCGTACCAAGAGATCAGCTTC  |
| actin5c_fwd:   | AAGTTGCTGCTCTGGTTGTCG        |
| actin5c_rev:   | GCCACACGCAGCTCATTGTAG        |
| BEL1_fwd:      | ATTATACAAACGCCCAATTGCCAAAA   |
| BEL1_rev:      | TCCGATGAAGCTGCAGACAAATAAGA   |
| BLOOD_fwd:     | AGACGTTCATTACAGATCAAGGTACGGA |
| BLOOD_rev:     | AGTTCGTATGGGCAATAGTCATGGACT  |
| DM412_fwd:     | AAAGTACGGTCCAATGAAGACG       |
| DM412_rev:     | GTGGTGATGAGCTGTTGATGTT       |
| F-element_fwd: | TTGTTGAACAGCATACCACTCC       |
| F-element_rev: | CCAGAGTTGATGAGCCAGTGTA       |
| gypsy6_fwd:    | GACAAGGGCATAACCGATACTGTGGA   |
| gypsy6_rev:    | AATGATTCTGTTCCGGACTTCCGTCT   |
| MDG1_fwd:      | AACAGAAACGCCAGCAACAGC        |
| MDG1_rev:      | CGTTCCCATGTCCGTTGTGAT        |
| ROO_fwd:       | CGTCTGCAATGTACTGGCTCT        |
| ROO_rev:       | CGGCACTCCACTAACTTCTCC        |
| stalker4_fwd:  | TTTGGAAGATTACCAAGGCAGTTCGC   |
| stalker4_rev:  | GGATCTAACTTATGACCCGATTCGTTCC |
| ZAM_fwd:       | ACTTGACCTGGATACACTCACAAC     |
| ZAM_rev:       | GAGTATTACGGCGACTAGGGATAC     |
| FHV_fwd:       | CCCTGGAGTCGCTTACTTGAGTGCT    |
| FHV_rev:       | ATGGAAGCGTACCTGAAGGAGGACA    |
| DOC_fwd:       | TACCTTAAACAAACAAACATGCCCACC  |
| DOC_rev:       | TTTGTATGGGTGGTCAGCTTTTCGT    |
| DM297_fwd:     | GCCAGTACACACGAACGAAATA       |
| DM297_rev:     | AATTGAATTTTGGCAATTTTGG       |
| TABOR_fwd:     | GAGCAAGAATTATGCTCGAAGAA      |
| TABOR_rev:     | AATTTATGTCCGGTTTCGTTTTT      |
|                |                              |

# endo-siRNA target analysis:

|             | <u> </u> |                           |
|-------------|----------|---------------------------|
| mus308_fwd: |          | AAGGATTAGCGCCAAGCTGGAGGAT |
| mus308_rev: |          | ACCACGACCACTGCCACAGAGATTC |
| CG9203_fwd: |          | AGCTGGCAGAAAAACCATGACCAGT |
| CG9203_rev: |          | CAATTCTTTTGGCGTAGCTTGAGCA |
|             |          |                           |

### S2 cell knockdown analysis:

| S2-Dcr-1_fwd: | ACGCCTTCCATCTCCCAGTTTTACC |
|---------------|---------------------------|
| S2-Dcr-1_rev: | GCCACCCTGCTTATTCTGACTGCTC |

| S2-Dcr-2_fwd:  | AAACGAGAGATTCGTGCCCAAAACA  |
|----------------|----------------------------|
| S2-Dcr-2 rev:  | CTGTCCTTGCTCTTATCGGCCTTGT  |
| S2-Drosha fwd: | AGATGCCAGAGAACTTCACCATCCA  |
| S2-Drosha rev: | GAAAGAAGTGAAAAGCTGGGCAGGA  |
| S2-Pasha fwd:  | TGTCAAGGACAAGATAACGGGCAACA |
| S2-Pasha rev:  | GTTGGGAGATGGCTCCGTCGTCT    |
| S2-AGO1 fwd:   | ACTACCACGTTCTGTGGGACGACAA  |
| S2-AGO1 rev:   | GAATCGTGCTCCTTCTCCACCAGAT  |
| S2-AGO2_fwd:   | AACCCTCAAAAGTAAATCATGGGAAA |
| S2-AGO2 rev:   | ATTTTTGCTGTTGGCCTCCTTG     |
| S2-Loqs_fwd:   | GTGTGTGCGTCTGGATTTTGCTGTA  |
| S2-Logs rev:   | GTTTTCGGGAGGATTCGGTGTGTAT  |
| S2-R2D2 fwd:   | GCGAAGACGGAGGGTACGTCTGTAA  |
| S2-R2D2 rev:   | AGTCGAATCCTTCATCAAGCCGTGT  |
| —              |                            |

# **Supplementary Tables**

| chromosome | start    | stop     | annotation            | size [nt] s | siRNA density [siRNAs/bp] | uniquely mapping siRNAs | uniquely mapping siRNAs (plus) | uniquely mapping siRNAs (minus) |
|------------|----------|----------|-----------------------|-------------|---------------------------|-------------------------|--------------------------------|---------------------------------|
| х          | 1773055  | 1773076  | CG14805/CG14818       | 21          | 1.24                      | 102                     | 16                             | 86                              |
| 3L         | 15553715 | 15554131 | AG02/CG7739           | 416         | 0.65                      | 1018                    | 683                            | 335                             |
| 2R         | 4999020  | 4999084  | tsu/Mys45A            | 64          | 0.45                      | 56                      | 13                             | 43                              |
| х          | 6183510  | 6183583  | wuho/Rpt4             | 73          | 0.45                      | 69                      | 61                             | 8                               |
| 2L         | 20064256 | 20064339 | lok/vls               | 83          | 0.39                      | 68                      | 16                             | 52                              |
| 2L         | 9788759  | 9789185  | esi1                  | 426         | 0.36                      | 2955                    | 2                              | 2953                            |
| 3L         | 22258908 | 22259084 | Ddx1/CG11523          | 176         | 0.35                      | 112                     | 61                             | 51                              |
| 3L         | 7970921  | 7971009  | CG8209/CG8038         | 88          | 0.33                      | 44                      | 26                             | 18                              |
| 3R         | 22736530 | 22736695 | T48/Ets97D            | 165         | 0.33                      | 78                      | 45                             | 33                              |
| 3L         | 8395167  | 8395479  | CG33057, mkg-p/CG7120 | 312         | 0.33                      | 191                     | 105                            | 86                              |
| 3R         | 6592104  | 6592458  | Cap-H2/TfIIbeta       | 354         | 0.32                      | 214                     | 150                            | 64                              |
| 21         | 9789830  | 9790265  | esi1                  | 435         | 0.32                      | 8780                    | 0                              | 8780                            |
| 3R         | 1053041  | 1053216  | CG1115/katanin-60     | 175         | 0.32                      | 82                      | 38                             | 44                              |
| 2R         | 6356995  | 6357092  | CG11777/CPT1          | 97          | 0.32                      | 43                      | 22                             | 21                              |
| 38         | 20154174 | 20154376 | BRWD3/CG5728          | 202         | 0.31                      | 134                     | 70                             | 64                              |
| x          | 8610753  | 8611055  | CG1785/I(1)a0020      | 302         | 0.26                      | 202                     | 128                            | 74                              |
| 2R         | 17016974 | 17017205 | mago/Magi             | 231         | 0.24                      | 106                     |                                | 70                              |
| 2R         | 3989805  | 3989943  | cul-4/CG11210         | 138         | 0.24                      | 52                      | 37                             | 15                              |
| 2R         | 13404771 | 13404916 | CG4853/CG11419        | 145         | 0.23                      | 51                      | 24                             | 27                              |
| Y          | 16683171 | 16683650 | CG4756/Prp45          | 470         | 0.21                      | 161                     | 68                             | 03                              |
| 21         | 14359309 | 14361319 | Prant354              | 2010        | 0.21                      | 610                     | 301                            | 309                             |
| 20         | 10050284 | 10050626 | O-fut1/Tango7         | 342         | 0.20                      | 135                     | 41                             | 94                              |
| 31         | 1600634  | 1600823  | notential overlap     | 180         | 0.20                      | 155                     | 71                             | 35                              |
| 31         | 15601809 | 15602197 | notential overlap     | 388         | 0.20                      | 105                     | 59                             | 46                              |
| 20         | 7113812  | 7114223  | Co7737/skf            | 411         | 0.18                      | 117                     | 65                             | 52                              |
| 38         | 11163614 | 11164074 | Sra-1/CG6218          | 460         | 0.17                      | 129                     | 32                             | 97                              |
| 21         | 12045376 | 12045575 | CG6770: no overlan    | 199         | 0.16                      | 55                      | 33                             | 22                              |
| X          | 15599850 | 15600559 | CG8134/CG9281         | 709         | 0.15                      | 148                     | 69                             | 79                              |
| 3R         | 25689428 | 25689611 | RpS8/CG7816           | 183         | 0.15                      | 46                      | 12                             | 34                              |
| 38         | 20449117 | 20449604 | mld/Svx18             | 487         | 0.15                      | 129                     | 57                             | 72                              |
| 31         | 12498567 | 12498831 | vih/CG10654           | 264         | 0.15                      | 51                      | 26                             | 25                              |
| 31         | 20515289 | 20515737 | CG5104/CG4825         | 448         | 0.15                      | 103                     | 48                             | 55                              |
| x          | 2158693  | 2159323  | CG3071/CG2924         | 630         | 0.14                      | 197                     | 108                            | 89                              |
| 31         | 691492   | 691885   | RabX6/CG3279          | 393         | 0.14                      | 75                      | 36                             | 39                              |
| 21         | 7801526  | 7802166  | r2d2/cdc14            | 640         | 0.14                      | 148                     | 78                             | 70                              |
| 2R         | 8064757  | 8065016  | CCT5/CG8862           | 259         | 0.14                      | 57                      | 25                             | 32                              |
| 3R         | 11179363 | 11179686 | CG5038/CG6194         | 323         | 0.13                      | 83                      | 35                             | 48                              |
| 3R         | 4653189  | 4653571  | pyg/CG8379            | 382         | 0.13                      | 76                      | 39                             | 37                              |
| 3L         | 259029   | 259327   | potential overlap     | 298         | 0.12                      | 41                      | 22                             | 19                              |
| 3R         | 18949582 | 18949926 | cenB1A/CG31365        | 344         | 0.12                      | 46                      | 21                             | 25                              |
| 31         | 5583103  | 5583697  | CG5146/spo            | 594         | 0.12                      | 123                     | 69                             | 54                              |
| 2R         | 18060003 | 18060378 | a/CG3045              | 375         | 0.11                      | 61                      | 25                             | 36                              |
| 31         | 11682255 | 11683235 | Sug/CG14133           | 980         | 0.11                      | 153                     | 80                             | 73                              |
| 3R         | 10145711 | 10146334 | pr-set7/CG8538        | 623         | 0.10                      | 88                      | 33                             | 55                              |
| 2R         | 7168022  | 7168489  | Vh1/CG9062            | 467         | 0.10                      | 62                      | 30                             | 32                              |
| 3L         | 3211014  | 3211291  | grv/CG14967           | 277         | 0.10                      | 43                      | 34                             | 9                               |
| 3R         | 23758231 | 23758796 | CG5508/Mes-4          | 565         | 0.10                      | 87                      | 47                             | 40                              |
| x          | 12503984 | 12504356 | CG32654/CG1463        | 372         | 0.10                      | 47                      | 25                             | 22                              |
| 3R         | 12917269 | 12917631 | CG5148/cher           | 362         | 0.09                      | 46                      | 28                             | 18                              |
| 3L         | 3322130  | 3322538  | CG12016/CG11526       | 408         | 0.09                      | 47                      | 24                             | 23                              |
|            |          |          |                       |             |                           |                         |                                |                                 |

Table S1. Endo-siRNA generating loci in ovaries

3'UTR overlap or predicted overlap based on EST evidence structured cluster (note that esi2 is not identified here as it is repetetive, while this table only identifies clusters based on uniquely mapping siRNAs genes producing siRNAs over their complete length unclear

#### Table S2. Endo-siRNA generating loci in S2 cells.

| chromosome | start    | stop     | annotation                   | size [nt] si | RNA density [siRNAs/bp | uniquely mapping siRNAs | uniquely mapping siRNAs (plus) | uniquely mapping siRNAs (minus |
|------------|----------|----------|------------------------------|--------------|------------------------|-------------------------|--------------------------------|--------------------------------|
| 3L         | 15550580 | 15550600 | vector                       | 20           | 1.90                   | 189                     | 120                            | 69                             |
| 3L         | 494514   | 498125   | klarsicht cluster A          | 3611         | 1.80                   | 81393                   | 38416                          | 42977                          |
| х          | 2683995  | 2687242  | vector                       | 3247         | 1.56                   | 44169                   | 23057                          | 21112                          |
| 3L         | 15549040 | 15549053 | vector                       | 13           | 1.54                   | 60                      | 56                             | 4                              |
| 3L         | 15550847 | 15558295 | vector                       | 7448         | 1.37                   | 192350                  | 111384                         | 80966                          |
| 3L         | 502144   | 508892   | klarsicht cluster B          | 6748         | 1.16                   | 93344                   | 44671                          | 48673                          |
| х          | 2690029  | 2690784  | vector                       | 755          | 0.90                   | 3057                    | 1439                           | 1618                           |
| 3L         | 15549735 | 15550140 | vector                       | 405          | 0.50                   | 916                     | 445                            | 471                            |
| 3L         | 15544414 | 15548374 | vector                       | 3960         | 0.40                   | 4634                    | 2075                           | 2559                           |
| 2R         | 2705192  | 2705225  | downstream of koi            | 33           | 0.30                   | 50                      | 50                             | 0                              |
| 2L         | 9787382  | 9790285  | esi1                         | 2903         | 0.23                   | 7098                    | 332                            | 6766                           |
| 3R         | 1053044  | 1053208  | CG1115/katanin-60            | 164          | 0.21                   | 74                      | 26                             | 48                             |
| 2L         | 1158668  | 1159346  | tango14                      | 678          | 0.19                   | 197                     | 100                            | 97                             |
| 31         | 22258937 | 22259079 | Ddx1/CG11523                 | 142          | 0.18                   | 40                      | 25                             | 15                             |
| 21         | 8687262  | 8687590  | Hnf4/CG9298                  | 328          | 0.16                   | 85                      | 10                             | 75                             |
| 31         | 625207   | 627226   | hantam precursor             | 2019         | 0.14                   | 461                     | 292                            | 169                            |
| 31         | 691194   | 691891   | RahX6/CG3279                 | 697          | 0.13                   | 161                     | 67                             | 94                             |
| 38         | 18572158 | 18572408 | HP1c/CG17141                 | 250          | 0.13                   | 52                      | 13                             | 30                             |
| Y          | 6183518  | 6183699  | wubo/Rot4                    | 181          | 0.13                   | 41                      | 31                             | 10                             |
| 31         | 7970926  | 7971081  | CG8209/CG8038                | 155          | 0.12                   | 48                      | 12                             | 36                             |
| 31         | 15601732 | 15602189 | PhoGAP71E/CG7650             | 457          | 0.12                   | 74                      | 45                             | 20                             |
| v          | 1371166  | 1375156  | CG14791/CG14792              | 2000         | 0.11                   | 693                     | 75                             | 406                            |
| 21         | 10231856 | 10233707 | eIF1delta                    | 1851         | 0.11                   | 466                     | 2/7                            | 400                            |
| 20         | 1600634  | 16229707 | aptorous                     | 12229        | 0.11                   | 400                     | 1142                           | 2791                           |
| 20         | 1009034  | 10005605 | apterous                     | 1906         | 0.10                   | 3423                    | 1142                           | 121                            |
| JK<br>V    | 16603709 | 16603003 | Sav no overlap               | 1090         | 0.10                   | 292                     | 101                            | 131                            |
| ^ .        | 12016070 | 12012094 | CCE148/shor                  | 403          | 0.10                   | 146                     | 21                             | 43                             |
| 21         | 12910970 | 1291/004 |                              | 914          | 0.10                   | 140                     | 94                             | 32                             |
| 2L<br>2D   | 10545072 | 10546010 | grk/Akap200                  | 1746         | 0.10                   | 108                     | 33                             | /3                             |
| JK.        | 1772015  | 1772164  | wge no overlap               | 1/40         | 0.09                   | 22/                     | 120                            | 107                            |
| X          | 1//2815  | 1//3164  | CG14805/CG14818              | 349          | 0.09                   | 210                     | 23                             | 187                            |
| 2L         | 21086874 | 21089157 | ppk13; whole gene            | 2283         | 0.09                   | 312                     | 128                            | 184                            |
| 3L         | 20515308 | 20515699 | CG5104/CG4825                | 391          | 0.08                   | 47                      | 30                             | 17                             |
| 3L         | 3321963  | 3322631  | CG12016/CG11562              | 668          | 0.08                   | 89                      | 43                             | 46                             |
| 2R         | 10049/15 | 10050536 | O-Fut1/lango/                | 821          | 0.08                   | 201                     | 48                             | 153                            |
| 2R         | 6986288  | 6988174  | luna no overlap              | 1886         | 0.08                   | 216                     | 105                            | 111                            |
| 3R         | 1/096019 | 1/098513 | CG5919/CG3308                | 2494         | 0.08                   | 285                     | 141                            | 144                            |
| 3R         | 6591969  | 6592520  | Cap-H2/IfIIFbeta             | 551          | 0.07                   | 61                      | 50                             | 11                             |
| 2L         | 475050   | 475851   | MED-15/POTENTIALLY CBT       | 801          | 0.07                   | 87                      | 36                             | 51                             |
| 2R         | 1595804  | 1604222  | apterous                     | 8418         | 0.07                   | 852                     | 414                            | 438                            |
| 2R         | 6418923  | 6420361  | lola                         | 1438         | 0.07                   | 149                     | 69                             | 80                             |
| 2R         | 1623127  | 1626081  | upstream of ap               | 2954         | 0.07                   | 310                     | 149                            | 161                            |
| 2R         | 10658051 | 10658501 | BEAF32 5'UTR sense/antisense | 450          | 0.07                   | 43                      | 6                              | 37                             |
| 3R         | 21086061 | 21086445 | CG11857/CG10425              | 384          | 0.07                   | 42                      | 22                             | 20                             |
| 2R         | 12083949 | 12084373 | CG8446 5'UTR                 | 424          | 0.07                   | 44                      | 11                             | 33                             |
| 3L         | 650261   | 652829   | bantam precursor             | 2568         | 0.06                   | 219                     | 137                            | 82                             |
| х          | 1959462  | 1963465  | CG4199                       | 4003         | 0.06                   | 351                     | 166                            | 185                            |
| 2L         | 160250   | 161426   | spen intron                  | 1176         | 0.06                   | 102                     | 56                             | 46                             |
| 3R         | 27572676 | 27573235 | antisense gene in sense gene | 559          | 0.06                   | 48                      | 27                             | 21                             |
| 3R         | 50391    | 54775    | auxillin/CG18143             | 4384         | 0.06                   | 369                     | 145                            | 224                            |

siRNAs derived from the transfected plasmid which contains AGO2, flanking sequences and white 3'UTR overlap or predicted overlap based on EST evidence structured cluster other

# **Supplementary Figures**



**Figure S1.** AGO2 localization in a developing egg chamber. Shown is immunofluorescence staining for Flag-HA tagged AGO2 expressed from its native promoter in a developing egg chamber. **(a)** DNA stained with TOPRO3; **(b)** AGO2 stained with anti HA; **(c)** actin stained with Phalloidin; **(d)** overlay; AGO2 is detected uniformly in germline and somatic cells of the ovary.



**Figure S2.** Transposon-derived siRNAs are not strand biased. (a) A heatmap was generated indicating cloning frequency (grey) and strand bias (red antisense and green sense) of AGO2 bound siRNAs from ovaries. To the right, the strand bias of Piwi, Aubergine and AGO3 bound piRNAs is provided for comparison (piRNA sequences as published in ref.12). Shown are elements from the gypsy and the jockey family of retrotransposons. Similar results were obtained from other transposon families. (b) Length profiles of 18-29 nt small RNAs obtained from total RNA libraries from wild-type ovaries mapping with up to three mismatches to the indicated transposons. (c) Steady-state RNA levels of twelve transposons and two control genes (normalized to rp49) are shown in ovaries mutant for *dcr-2* as compared to *dcr-2* heterozygotes (four independent biological replicates with error bars indicating technical variation). (d) Length profile of 18-29 nt small RNAs obtained from a wildtype ovarian total RNA library mapping exclusively to the 42AB piRNA cluster.

www.nature.com/nature

#### SUPPLEMENTARY INFORMATION



# b

| position<br>CG8289 5' | 400<br>A<br>CGUU UAGAGGAUUCGGAUGA<br>GCAA AUCUCCUAAGCCUACU | position 408<br>CG8289 5' C<br>AGGAUUCGGAUGAUGAUG UA<br>UCCUAAGCCUACUACUAC AU | position 743<br>CG8289 5' G G<br>GCUAAGG ACGUGGUCGAC G<br>CGGUUCC UGCACCAGCUG C |
|-----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| siRNA 3'              | С                                                          | siRNA 3' U                                                                    | siRNA 3' A G                                                                    |
| position              | 772                                                        | position 842                                                                  | position 851                                                                    |
| CG8289 5'             | A<br>CACCAAGAAAGCCGACG UUCA<br>GUGGUUCUUUCGGUUGC AAGU      | CG8289 5' C<br>GCCACCAAGGAGGGCGA AUG<br>CGGUGGUUCCUCCCGCU UAC                 | CG8289 5' C C<br>GAGGGCGA AUGUUUAAGAUC<br>CUCCCGCU UACAAGUUCUAG                 |
| siRNA 3'              | G                                                          | siRNA 3' U                                                                    | siRNA 3' U U                                                                    |
| position              | 860                                                        | position 884                                                                  | position 893                                                                    |
| CG8289 5'             | C C<br>AUGUUUAAGAUC GAUGGAA<br>UACAAGUUCUAG CUACCUU        | CG8289 5' G A<br>UAUGG CCGAAGGAUGAUU<br>AUACC GGUUUCCUACUAA                   | CG8289 5'<br>AAGGAUGAUUCCUGGGAGCCGA<br>UUCCUACUAAGGACUCUCGGUU                   |
| siRNA 3'              | U U                                                        | siRNA 3'UG C                                                                  | siRNA 3'                                                                        |
| position              | 898                                                        | position 903                                                                  | position 915                                                                    |
| CG8289 5'             | UGAUUCCUGGGAGCCGAGUAA<br>ACUAAGGACUCUCGGUUCGUU             | CG8289 5 '<br>CCUGGGAGCCGAGUAAGAAUCU<br>GGACUCUCGGUUCGUUCUUAGA                | CG8289 5' G<br>GUAAGAAUCUGGC UGCGAUG<br>CGUUCUUAGACCG ACGCUAC                   |
| siRNA 3'              |                                                            | siRNA 3'                                                                      | siRNA 3' A                                                                      |
| position              | 920                                                        |                                                                               |                                                                                 |
| CG8289 5'             | G U<br>AAUCUGGC UGCGAUGCGCU<br>UUAGACCG ACGCUACGUGA        |                                                                               |                                                                                 |
| SIKNA 3'              | A U                                                        |                                                                               |                                                                                 |

Figure S3. esi-1 produces abundant phased siRNAs. (a) CG18854 on chromosome 2L encodes a prominent structured siRNA locus. Shown is the annotated Flybase gene structure indicating the CDS, and 5' and 3' UTRs and introns. Genes on the genomic plus strand are in green, with those on the minus strand in red. The density of siRNAs across the region is depicted below. All siRNAs derive from the genomic minus strand. The structure of the complete ~400 bp fold-back and a close-up are shown below including the 5' positions of cloned siRNAs from the total testis RNA library (vertical bars indicating cloning frequency). Brackets indicate phased 21 nt intervals. (b) Multiple abundant siRNAs from esi-1 share significant complementarity to the protein-coding gene, CG8289. Shown are the duplex structures and the start position within the CG8289 mRNA. Sites within CG8289 were identified using the RNAhybrid website (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html; ref. 31). www.nature.com/nature



**Figure S4.** siRNA generation is generally confined to 3'UTR overlaps of convergently transcribed genes. (a) Shown are the total numbers of siRNAs (from the ovarian AGO2 IP library) mapping to all pairs of convergently transcribed genes with annotated transcript overlaps in the genome (bioinformatically extracted). Zero depicts the center of the annotated overlap and each bar represents the number of siRNAs in consecutive 50 nt windows upstream and downstream from this center. (b) To exclude that siRNA density is a sheer reflection of the 2 fold elevated rate of transcription in overlap regions, we plotted the number of annotated ESTs in the identical windows as for (a).



**Figure S5.** The Pgant35A gene produces siRNAs from both strands over the entire gene. Shown is the Pgant35A locus with flanking genes and the siRNA density from the ovarian AGO2 IP library over the entire locus above. Multiple ESTs annotated to Pgant35A support extensive sense/antisense transcription at this locus. No corresponding siRNAs were detected in the S2 cell AGO2 IP library.



**Figure S6.** Two bi-directional siRNA clusters residing within the klarsicht locus. siRNAs from these two neighboring clusters account for ~16% of all S2 cell endo-siRNAs. One cluster partially overlaps a coding exon of klarsicht, likely enabling a regulatory interaction. The two clusters share no sequence relationship to each other or to any other sequence in the *Drosophila* genome or the 'nr' database at NCBI. Interestingly, two annotated transcripts residing between the siRNA clusters are nearly perfect reverse complements allowing for a dsRNA fold-back structure. However, no siRNAs mapping to this structure were identified.



**Figure S7.** An endo siRNA locus resides within the thickveins gene. Shown is the siRNA density across the entire thickveins locus with annotated transcripts shown in red (genomic minus) and green (genomic plus). siRNAs are exclusively produced from an area which overlaps the annotated gene, CG14033. A magnification of the locus is shown below. A BLAST homology search reveals that the only portion of CG14033 with a significant match in the genome is confined to the area, which gives rise to endo-siRNAs. The BLAST complementarity to CG9203 is shown as black boxes. The detail below depicts one part of the sequence complementarity between the CG9203 target locus and cloned siRNAs from the thickveins cluster. The bar graph indicates CG9203 mRNA levels in testis and ovaries mutant for *AGO2* or *dcr-2* compared to their respective heterozygotes, with standard deviation indicated by the www.error. bars.(nre-3). Note that siRNAs from the thickveins cluster are only detected in testis.



**Figure S8**. Knockdown efficiency by RNA interference of genes analyzed in Figure 4. Shown are steady state RNA levels (normalized to rp49) of the indicated genes after eight days of dsRNA treatment measured by qRT-PCR. Two independent experiments are shown (error bars indicate deviation within technical replicates). qRT-PCR primers match outside the regions used for dsRNA synthesis.

| esi-2.1 | G<br>UUGACUCCAACAAGUUCCUCC<br>CAACCUGAGUUUGUUCAGGGA              |
|---------|------------------------------------------------------------------|
| esi-1.1 | UCGGUCGACCACGUACCUUGGC                                           |
| esi-1.2 | CGGGAAACUAUGGAUCAAAUG<br>OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO      |
| esi-1.3 | UGAUUAUGUUGCCUCCAAGUA<br>UAAAUAGUACAUCGGUGGUUC                   |
| bantam  | UGAGAUCAUUUUGAAAGCUGAUU<br>• • • • • • • • • • • • • • • • • • • |

**Figure S9.** Duplex structures for the siRNAs analyzed in Figure 4. Shown is the siRNA sequence detected by northern blot in red and the corresponding passenger strand in black as extracted from the respective foldback structure. Watson Crick base pairs are shown as solid, GU base pairs as open dots. Note that esi-1.1 most resembles a perfect siRNA duplex, potentially explaining its partial dependence on R2D2 (see Figure 4B).



**Figure S10.** Genetic requirements for esi-2.1 biogenesis and stability in flies. Northern analysis of the most abundant endo-siRNA derived from esi-2. Total RNA from wild-type, mutant and heterozygote female flies (as indicated) was electro-phoresed alongside RNA size markers (indicated to the left in nt). The membrane was re-probed for 2S rRNA levels to control for equal loading. Note, that *dcr-2* and *loqs* mutants show a complete or nearly complete loss of this siRNA, while *AGO2* mutants retain low levels. A measurable but less pronounced decrease is observed in *r2d2* mutants. Also note that heterozygotes for *dcr-2* and *loqs* already exhibit substantial decreases in siRNA levels.







**Figure S12.** Loqs interacts with Dcr-1 and Dcr-2. Shown are counts of identified peptides (spectral counts) in Loqs immunoprecipitates from S2 cells and flies analyzed by MudPit (ref. 32). A polyclonal antibody against Loqs was used for immunoprecipitations (ref.1).



**Figure S13.** Schematic of Renilla/Firefly luciferase reporters used for Figure 4. Indicated are cartoons of the control reporter expressing firefly luciferase and the experimantal reporter expressing Renilla luciferase. Both reporters contain CuSO4 inducible promotors and the Renilla reporter harbors two target sites for a specific endo-siRNA.

## Literature Cited

- 31. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. Rna 10, 1507-17 (2004).
- Wolters, D. A., Washburn, M. P. & Yates, J. R., 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683-90 (2001).
- 33. Stark, A. et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17, 1865-79 (2007).
- 34. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462-7 (2005).