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The availability of complete genome sequences from many

organisms has yielded the ability to perform high-throughput,

genome-wide screens of gene function. Within the past year,

rapid advances have been made towards this goal in many

major model systems, including yeast, worms, flies, and

mammals. Yeast genome-wide screens have taken advantage

of libraries of deletion strains, but RNA-interference has been

used in other organisms to knockdown gene function.

Examples of recent large-scale functional genetic screens

include drug-target identification in yeast, regulators of fat

accumulation in worms, growth and viability in flies, and

proteasome-mediated degradation in mammalian cells. Within

the next five years, such screens are likely to lead to annotation

of function of most genes across multiple organisms.

Integration of such data with other genomic approaches will

extend our understanding of cellular networks.
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Introduction
Geneticists assign biological functions to genes by manip-

ulating the genetic materials of model organisms, such as

yeast, worms, flies and mice. This has historically taken

place within the paradigm of forward genetic screens, in

which genomes are semi-randomly mutated and pheno-

types of interest are scored. This approach has been

enormously successful in identifying thousands of genes

that are related to all aspects of organism biology, from

basic cellular machinery of growth and differentiation, to
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behavior and lifespan. Importantly, the task of identifying

the genes themselves has become increasingly faster over

the years, because of the development of various screen-

ing and molecular mapping techniques (reviewed in [1]).

Regardless of the success of the forward genetic approach

to functional genomics, the field is experiencing a para-

digm shift, due to the recent availability of the full

genome sequences of many organisms. This information,

when combined with powerful new technologies to knock

out gene function, has led to the development of several

high-throughput approaches to functional genomics.

Here, we describe the most recent advances in high-

throughput screens (HTS) in functional genomics

(see Table 1 for summary).

Yeasts and worms lead the pack
Gene function can be inferred by removing a particular

gene from an organism or cell and observing the behavior

or phenotype. Performing this in a systematic, genome-

wide manner is possible, in theory, now that full genomes

have been sequenced. However, it is only in the budding

yeast Saccharomyces cerevisiae that deletion of every gene

has been technically feasible, as a result of the high

efficiency of homologous recombination and small

genome size.

S. cerevisiae has traditionally been extremely useful for the

study of many conserved cellular functions. This has now

been accelerated by the availability of a gene deletion

library of approximately 96% of known open reading

frames [2,3]. Determination of the role of a gene was

accelerated by pooling deletion strains and tracking their

abundance under competitive growth conditions (e.g.

different types of media) using genetic ‘barcodes’ that

are included on each strain [2]. In addition, other phe-

notypes, such as cell shape [2] or centromere cohesion [4],

have been screened individually through microscopy (see

also Update). Furthermore, this library was used to con-

struct ‘synthetic genetic arrays’, which allow systematic

analysis of double-mutant phenotypes with a particular

gene of interest, for example, synthetic lethality [5]. The

library can also be used to address biological problems

other than initial gene annotation, such as identifying

putative drug targets. Several recent studies have taken

advantage of the differential growth response of deletion

strains to a particular drug, and followed their relative

abundance using the barcodes [6,7�,8].

Many biological processes, such as intercellular signaling

cascades, are not conserved in yeast; hence, the exploita-

tion of animal genetic model systems. Although there are

efforts underway to develop mutations in every gene, for
www.sciencedirect.com
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Table 1

Genome-wide functional genetic screens.

Organism

Yeast (S. cerevisiae) Worms (C. elegans) Flies (Drosophila) Mammals (human and mouse cells)

Knockdown methodology Gene deletion Long dsRNA Long dsRNA siRNA, shRNA

Knockdown introduction Strains previously constructed by

homologous recombination

Feeding bacteria Cell bathing Cell transfection

Soaking Cell transfection Cell infection

Injection Embryo injection

Recent assays Centromere cohesion Embryonic lethality Growth and viability p53 signaling

Drug target identification Fat accumulation Cell morphology Proteasome-mediated degradation

Transposon silencing Hedgehog signaling NFkB

Cardiogenesis

References [2,4,6,7�,8] [23��,25,26] [33�,36,37�,38��] [42��–44��]
example, in the worm Caenorhabditis elegans (see C. elegans
Gene Knockout Consortium; http://celeganskoconsortiu-

m.omrf.org/) or the fruitfly Drosophila melanogaster ([9,10];

Berkeley Drosophila Genome Project: Gene Disruption

Project, http://www.bdgp.org/p_disrupt/index.html.), this

process is incomplete and screening of these mutants in

HTS may be laborious and inefficient. Within the past

five years, however, RNA-mediated interference (RNAi),

which allows sequence-specific degradation of gene

transcript using double-stranded RNA (dsRNA; see

[11,12] for review) in Drosophila and C. elegans, has opened

up the possibility of performing loss-of-function screens

with every known gene in a high-throughput and

unbiased manner. Briefly, long stretches of dsRNA that

are complementary to a given transcript, when introduced

into cells or organisms, are digested into 21–23-nucleotide

(nt) sequences by the Dicer family of ribonucleases; these

short-interfering RNAs (siRNAs) are then targeted to

the gene of interest through the RNAi-induced silencing

complex, which leads to transcript degradation [11,12].

Since its introduction, RNAi technology has been

adapted to full-genome HTS rapidly. As the process

was originally described in worms [13], genome-wide

screening was first developed in this organism.

Double-stranded RNA can be introduced in the worm

through a variety of mechanisms, including injection,

soaking, feeding bacteria expressing the dsRNA, or inser-

tion of a transgene expressing a hairpin (inverted repeat)

of the dsRNA (reviewed in [14]). The first three techni-

ques have all been adapted to large-scale RNAi screens.

Injection of dsRNA can be time-consuming but often

generates more penetrant phenotypes [14]. This ap-

proach has been used systematically in the analysis of

cell-division phenotypes of genes on the C. elegans third

chromosome [15], and in the embryonic phenotype of

genes that are expressed in the parental ovary [16], both

using time-lapse video microscopy. Soaking of worms in

dsRNA directed towards ~50% of predicted C. elegans
genes has also been used to uncover phenotypic classes

[17]; this effort used a cDNA library to produce dsRNA

rather than gene predictions (as discussed below).
www.sciencedirect.com
Although this method might thus miss less abundant

transcripts, it only includes bona fide expressed genes.

The availability of the complete annotated worm genome

has also allowed entire classes of genes to be system-

atically identified. This has successfully been employed

in screens for effects of RNAi to predicted G protein-

coupled receptors on locomotion and reproduction [18],

and to predicted DNases, ribonucleases, cyclophilins

and topoisomerases on apoptotic DNA degradation

[19]. Class-based screens allow investigators to focus on

their genes of interest, while avoiding the time and

expense of full-genome screening.

The goal of the full-genome RNAi functional genetic

screens in C. elegans was recently realized through the

efforts of Kamath, Fraser, Ahringer and colleagues

[20,21��], who have developed a publicly available,

full-genome (86%) collection of bacteria that can be

induced to express each dsRNA and can then be fed to

worms. This feeding library was originally described in a

screen of general phenotypes for nearly every gene of the

C. elegans first chromosome [22], but within the past year

the ‘full-genome’ description of phenotypes has been

published [21��]. The authors scored several classes of

phenotypes in parents and their progeny, such as sterility,

embryonic lethality, growth retardation or other post-

embryonic effects. Roughly 10% of screened genes gen-

erated phenotypes, for which only one-third had a known

phenotype. This work demonstrated the power and

potential of genome-wide functional screening in both

ability to assign function to new genes and speed of

identification.

Different screen assays will necessarily identify different

subsets of genes, as the recent use of this feeding library

has demonstrated. Transposon silencing, protection from

mutation, polyglutamine aggregation and fat aggregation

assays have all successfully identified known and un-

known members of these processes [23–26]. In addition,

the original large-scale RNAi datasets of embryonic lethal

genes have been sub-screened, in an attempt to look for
Current Opinion in Genetics & Development 2004, 14:470–476
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specific defects in pronuclear migration [27]. These stu-

dies demonstrate the wide range of possible readouts of

gene function, dependent on the perspectives of the

individual investigators.

Flies and mammals go high-throughput
The development of full-genome functional screens in

C. elegans has proceeded from initial identification of

RNAi effects on small groups of genes, to proof-of-prin-

ciple large-scale screens, and finally to full-genome, sys-

tematic, high-throughput functional genetic screens.

Similar steps have been made within the past year in

Drosophila and mammals. Unlike C. elegans, for which

phenotypes are scored in the entire organism and are

thus automatically ‘biologically relevant’, most of the

efforts in both of these systems seek phenotypes in cell

populations. Although these approaches cannot address

multicellular developmental processes, many of these

pathways can nevertheless be screened in cells with

the appropriate reporters. However, rigorous in vivo vali-

dation is essential to confirm the relevance of RNAi

phenotypes. For this reason, Drosophila are particularly

useful as a model system: unlike those using worms,

which do not have established cell-culture techniques,

fly cell-based screens can be performed quickly, and,

unlike those of mammalian cells, potential hits can be

quickly validated in flies in vivo using large mutant

collections and other fly genetic tools.

The possibility of using dsRNA to inactivate genes in

Drosophila cells in culture was first explored several years

ago [28]. Following these initial successes, multiple groups

have subsequently demonstrated effects of dsRNA to a

limited number of known genes on, for example, cytokin-

esis [29,30]. Drosophila cell lines can be either transfected

with the dsRNA of interest or, in many lines, more con-

veniently bathed in medium with the dsRNA. Although

some cell lines are refractory to dsRNA introduction

through soaking and must be transfected [31�], the recent

discovery of the SID-1 dsRNA transporter in C. elegans has

suggested that ectopic expression of this protein in these

cells permits dsRNA uptake from the medium [32].

Partial-genome RNAi screens in Drosophila were reported

recently. The first of these, conducted by Ramet and co-

workers [33], screened 1000 dsRNAs, synthesized from a

random cDNA library, for effects on phagocytosis in S2

cells; they identified a key receptor for Gram-negative

bacterial recognition in Drosophila. Lum and colleagues

[31�] sought genes that are involved in the regulation of

the Hedgehog (Hh) pathway, one of the major signaling

cascades involved in animal development and disease.

Using a collection of 43% of the fly genome, the authors

identified several genes that resulted in reduced activity

of a luciferase Hh transcriptional reporter. In a contrasting

approach, Kiger et al. [34] used automated microscopy to

score for morphological phenotypes among approxi-
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mately 1000 signaling and cytoskeletal components in

two different cell types. By developing a complex phe-

notype annotation method, the authors could then assign

phenotypic signatures (or ‘phenoprint’) to groups of

genes, presumably implying functional relationships.

This type of ‘phenotypic clustering’ is similar to the

transcriptional profiling of microarray data (see also

Update). Finally, as in C. elegans, Drosophila embryos

can be directly injected with dsRNA to score for in vivo
phenotypes; a method that is useful for both cell-based

screen hit validation and, although more laborious, direct

screening. This has been demonstrated in a large-scale

screen of 5800 genes for effects on cardiogenesis [35�].

Following these large-scale screens, the first full-genome

functional RNAi screen in Drosophila has recently been

published. With a collection of dsRNAs directed towards

91% of the predicted fly genome, Boutros and co-workers

[36��] analyzed cell growth and viability using a lumines-

cent readout of cellular ATP levels. A total of 438 dsRNAs

resulted in a phenotype in duplicate screens, suggesting

that these genes fulfill essential cellular functions. Impor-

tantly, 80% of these had not been identified from previous

classical genetic screens. As with the first C. elegans full-

genome screen, this report outlines the potential of using

Drosophila cells to assay gene function across the entire

genome.

Mammalian genetics has long relied on spontaneous

mutations or the laborious process of knockout and trans-

genic methodology in mice to analyze gene function.

RNAi initially appeared to be out of reach for functional

analyses in mammalian cells. In contrast to flies and

worms, the introduction of long dsRNA in mammalian

cells induces a non-sequence-specific interferon response

and shutdown of translation (reviewed in [11]); however,

it was subsequently discovered that this response can be

bypassed by the direct introduction of Dicer products,

siRNAs of 21–23nt in length (mentioned earlier). Con-

sidering the enormous potential of this technology for

understanding gene function in mammals, as well as

therapeutic promise, there has been much effort towards

understanding the best method for introducing siRNAs

into cells and the ideal targeting region within the gene

[11,37,38]. siRNA is commonly introduced through

transfection of chemically synthesized siRNA or vectors

expressing short hairpin RNAs (shRNAs), under the

control of RNA polymerase III promoters.

Initial efforts in mammalian cells used smaller libraries

that demonstrated the potential of high-throughput RNAi

screening. One of the first large-scale siRNA screens in

mammalian cells used a library of 510 genes to identify

modulators of TRAIL (TNF-related apoptosis-inducing

ligand) [39]. For this screen, individual siRNAs were

transfected in a multiwell format into HeLa cells, and

assayed for apoptosis using a vital dye.
www.sciencedirect.com
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Three recent reports of large-scale RNAi screens in

mammalian cells demonstrate progress towards the full-

genome functional screen. The first of these has used

transfection of vectors expressing short hairpin (sh)RNA

directed towards 8000 individual genes [40��]; due to the

partially unknown rules for siRNA potency, they used

two shRNAs per gene. The authors identified several

known and unknown regulators of NFkB luciferase repor-

ter activation in response to TNF-a stimulation. The

remaining two reports used retrovirus-based shRNA

expression constructs for approximately 15 000 genes

(10 000 human and 5000 mouse) and 8000 human genes,

respectively [41��,42��]. Both groups used multiple

shRNAs to each gene to maximize the knockdown prob-

ability. Paddison and colleagues [41��] tested their library

to identify regulators of proteasome function; Berns and

colleagues [42��] screened for modulators of p53-induced

growth arrest. Following the success of yeast ‘barcodes’,

both groups also used different barcoding strategies to

track multiple shRNAs in pooled populations.

Problems and perspectives
The expected improvement, in the near future, of

algorithms detailing the precise region within a given

gene for targeting, as well as a better efficiency for RNAi

delivery will permit the realization of full-genome RNAi

screens in mammalian cells. Particularly important to

clarify are the discoveries of ‘off-target’ responses.

These include partially sequence-specific [43��] and

non-sequence-specific interferon-based responses that

can even be generated from siRNAs (both chemically

synthesized and transfected in shRNA vectors) [44,45].

Recent reports suggest that particular 50 modifications of

siRNAs can circumvent both of these problems [46,47].

Although off-target responses were not addressed in the

recent screening papers [40��,41��,42��], a phenotype

produced by any siRNA in mammalian cells must be

rigorously verified.

All RNAi-based functional screens suffer from the well-

known drawbacks of the variable penetrance of the tech-

nology. The degree of transcript knock-down varies

according to the cell type and gene of interest, leading

to significant percentages of false negatives [48]. For

example, C. elegans neurons appear to be particularly

resistant to dsRNA-mediated knockdown, although the

discovery of rrf-3 mutants (of the RNA-dependent RNA

polymerase family), which can sensitize worms to the

effects of RNAi, might alleviate some of these false

negatives [48,49]. Also, RNAi knockdown, unlike random

mutagenesis, cannot generate temperature-sensitive or

gain-of-function mutants; however, overexpression of

genes in a systematic manner to generate gain-of-function

phenotypes might be able to address this [50�], comple-

menting loss-of-function screens. Another issue to

address is whether pooling dsRNA or siRNA, as per-

formed in several screens [31�,35�,41��,42��], is appropri-
www.sciencedirect.com
ate for all assays, particularly those that seek quantitative

information on gene contribution to pathways on the

genome level.

The central component of any HTS is the assay itself,

which must be robust, accurate and have a high signal:

noise ratio and dynamic range. It is clear from the early

screens that a tremendous number of potential assays

might be possible, particularly in cell-based approaches.

These can rely on the significant technological improve-

ments in multiwell plate readers and in automated micro-

scopy and imaging algorithms. Given the investment that

is required for each screen, ‘multiplexing’ assays with

readouts of multiple variables and internal standardiza-

tions may improve the through-put and specificity of any

given assay. Standardizing the output nomenclature, such

as phenotypic annotation in C. elegans or Drosophila micro-

scopy [34,51], will facilitate cross-assay and cross-species

comparisons. Recent developments towards printing

slides with whole-genome dsRNA, siRNA or cDNA

collections and ‘reverse transfecting’ cells onto them will

miniaturize the screening format, accelerating the screen-

ing process [52] (reviewed in [53]).

As the number of screens in multiple organisms increases

rapidly, robust statistical tools are needed to generate inter-

and intra-screen conclusions. This will be aided by the

ability to perform many cell-based screens quickly and in

replicate. Furthermore, genome-wide screens have the

advantage that, in addition to individual gene annotations,

they can, by their nature, generate conclusions on the

genome level, such as chromosomal location of hits, imply-

ing evolutionary patterns in gene clustering, and contribu-

tions of classes of genes to particular phenotypes (e.g.

[21��]). Understanding these results and comparing across

organisms and assays will be a formidable challenge.

Considerable time and resources must be invested in

generating the libraries of RNAi. Consequently, only a

few such libraries will be available, making their public

availability, either through distributable kits or centralized

screening centers, essential. Thus, investigators with dis-

parate interests can screen in their system of interest.

Paradigms of this are the distributable gene-deletion kits

in yeast and C. elegans feeding library (Saccharomyces
Genome Deletion Project, http://www-sequence.stanford.

edu/group/yeast_deletion_project/deletions3.html; C. ele-
gans RNAi library, http://www.hgmp.mrc.ac.uk/geneser-

vice/reagents/products/descriptions/Celegans.shtml).

In Drosophila, several libraries are now available (Open

Biosystems, http://www.openbiosystems.com/index.php;

Eurogentec, http://www.eurogentec.be/). In addition, we

have established a Drosophila RNAi Screening Center, to

which researchers can apply to screen for their pathway

of interest (Drosophila RNAi Screening Center, http://

www.flyrnai.org). Making the data from screens publicly
Current Opinion in Genetics & Development 2004, 14:470–476
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available will permit validation of gene lists and data-

mining by investigators with different perspectives; the

early C. elegans efforts demonstrate this potential [54].

Making data publicly accessible will also hasten the con-

vergence of diverse genomic approaches. It is clear that

combining functional genomics with proteomics, expres-

sion genomics and chemical genetics will expand the

conclusions of any single assay or approach (reviewed in

[55,56]). For example, within the past year, three different

genomic efforts have investigated the p53 signaling path-

way: global gene profiling [57], large-scale RNAi-mediated

knockdown [42��], and large-scale cDNA-based overex-

pression [50]. These separate approaches have all helped

in deciphering the complex regulation of this pathway, but

combining the datasets through novel computational algo-

rithms might lead to more accurate network modeling and

the prediction of system behavior. This approach towards

understanding ‘systems-level’ information through geno-

mics has recently been shown to be valid in E. coli meta-

bolic pathway modeling [58]. Combining ‘-omic’

approaches in practice, on a smaller scale, has also been

successful in C. elegans and S. cerevisiae: candidates in

protein–protein interaction maps of TGF (transforming

growth factor)-b signaling in worms have been validated

with systematic RNAi in various genetic backgrounds

[59�]; germline-enriched genes were explored with pro-

tein–protein interaction, expression profiling and RNAi

phenotypes in worms [60]; and chemical genetic and

genetic interaction datasets were combined to suggest

drug targets in yeast [61].

Conclusions
We can view full-genome functional genetic screens

within the appropriate historical context of their prede-

cessor, the traditional forward genetic screen. In Droso-
phila, for example, the first saturation mutagenesis screens

analyzed simple, easily scored phenotypes, such as female

sterility or embryonic lethal phenotypes, from zygotic or

maternally-contributed genes (reviewed in [1]). As differ-

ent phenotypes and gene classes were sought, screen

complexity increased, leading to suppression/enhance-

ment, clonal and overexpression analyses [1]. We antici-

pate that high-throughput functional reverse genetic

screens will take a similar path. Initial screens will focus

on simple phenotypes, such as cell viability [36��], mor-

phology [34] or single signaling pathways [31�]. Screens

within the next few years will build increasing layers of

complexity in the uncovering of novel gene functions, by

multiplexing assays with advances in automated micro-

scopy, imaging, miniaturization and detection systems.

Update
Recent work has expanded the universe of genome-wide

screens. For example, in Drosophila, a library of dsRNA to

7216 conserved genes has been developed and screened

for regulators of innate immunity in S2 cells, using a
Current Opinion in Genetics & Development 2004, 14:470–476
microscopy-based assay [62]. The library of yeast haploid

mutant strains has yielded genes that are involved in

regulation of telomere length [63]. Lastly, Hartman and

Tippery [64] recently described methods for understand-

ing genetic and chemical-genetic interactions quantita-

tively using phenotypic clustering; although they used a

small number of the yeast haploid deletion strains to

model these interactions, their methods are adaptable

and scaleable to full-genome screens in other organisms.
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