Cell Reports, Volume 7
Supplemental Information

A Rapid Genome-wide MicroRNA Screen Identifies miR-14 as a Modulator of Hedgehog Signaling

Kevin Kim, Arunachalam Vinayagam, and Norbert Perrimon

SUPPLEMENTAL METHODS

Drosophila strains and genetics. All stocks were maintained and crossed at $25^{\circ} \mathrm{C}$ with the exception of RNAi crosses and miR-14 overexpression crosses, which were performed at $29^{\circ} \mathrm{C}$. The $m i R-14$ homozygous deletion mutant used is $m i R-14^{\Delta 1}$ (Xu et al., 2003). UAS-miR-14 is described in (Bejarano et al., 2012) and hh-Gal4 in (Tanimoto et al., 2000). SRF-Gal4, UAS-EGFP was kindly provided by Dr. Mark Krasnow. UAS-hh, UAS-ptc, and btl-Gal4 were kindly provided by Dr. Chrysoula Pitsouli. ci-Gal4, ap-Gal4, and ptc-Gal4 were kindly provided by Dr. Dong Yan. w^{1118}, sd-Gal4, and $h h^{A C}$ were obtained from the Bloomington Stock Center (http://flybase.bio.indiana.edu). RNAi lines from the TRiP facility at Harvard Medical School (http://www.flyrnai.org/TRiPHOME.html) are: hh-RNAi (HMS00492), ptc-RNAi (JF032230), and smo-RNAi (JF02363).

Quantification of adult wing size and $\boldsymbol{h} \boldsymbol{h}^{M r t}$ phenotype analysis. Wings clipped from adult male flies, were mounted in 50\% Xylene and 50\% Permount (Fisher) solution and imaged using Zeiss Axioskop 2. For quantification of wing size, wing area was measured using ImageJ (NIH). We used Microsoft Excel to calculate the average values and the corresponding standard deviation, and to perform the t-test analysis.

Western blots. Lysates prepared from whole pupae were separated by SDS-PAGE, blotted onto nitrocellulose membrane, and subjected to Western analysis using antibodies against Hh (1:1000; kindly provided by Dr. Xinhua Lin), Ptc (1:250; kindly provided by Dr. Matt Scott), Smo (1:500; (Denef et al., 2000); kindly provided by Dr.

Dong Yan) and α-Tubulin (1:1000; Sigma). Blots were subsequently incubated with HRP-conjugated goat secondary antibody (Amersham), and processed for chemiluminescence (Pierce). For quantification of band intensity, the raw images were analyzed using ImageJ (NIH).
qPCR. Total RNA was prepared from whole pupae. RNA was extracted using TRIzol Reagent (Invitrogen) and treated with DNAse I (Promega). cDNA was prepared using iScript cDNA Synthesis Kit (Bio-Rad) and qPCR was performed using iQ SYBR Green Supermix (Bio-Rad). gapdh and rp49 were used to normalize the RNA levels. Relative quantification of mRNA levels was calculated using the comparative CT method. qPCR primer sequences are available upon request.

SUPPLEMENTAL REFERENCES

Bejarano, F., Bortolamiol-Becet, D., Dai, Q., Sun, K., Saj, A., Chou, Y.T., Raleigh, D.R., Kim, K., Ni, J.Q., Duan, H., et al. (2012). A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139, 2821-2831.

Denef, N., Neubuser, D., Perez, L., and Cohen, S.M. (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521-531.

Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507-1517.

Tanimoto, H., Itoh, S., ten Dijke, P., and Tabata, T. (2000). Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol Cell 5, 59-71.

Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790-795.

SUPPLEMENTAL FIGURES

A

m2 mfe:-16.0 kcal/mol

m3 mfe: -18.3 kcal/mol

m4 mfe: - 10.6 kcal/mol
position 224 target 5' \qquad

B
ptc 3' UTR

m1 mfe: $-14.4 \mathrm{kcal} / \mathrm{mol}$ position 91
target 5' C C UCU UU U $\begin{array}{lll}\text { AG GGG } & \text { G } & \text { GAGGAUU } \\ \text { UC CUC } & \text { C } & \text { UUUCUGA }\end{array}$
miRNA 3^{\prime} UA UCU UU CU 5'
m2 mfe: $-12.2 \mathrm{kcal} / \mathrm{mol}$ position 611
target 5'

m3 mfe: $-16.4 \mathrm{kcal} / \mathrm{mol}$
miRNA 3' UAUCCUCUCUCUU
m
position 817
target 5'

$$
\begin{array}{ll}
\text { C } & \text { GAAGACUGA } \\
\text { U' } \\
\text { UUUCUGACU }
\end{array}
$$

m4 mfe: -14.9 kcal/mol
position 758

miRNA 3' UAU

C

Figure S1. Detailed locations of predicted miR-14 MREs within the 3' UTRs of 3 target genes. (A-C) Alignments and conservation data were produced by the UCSC Genome Center. The miR-14 and 3' UTR alignments were predicted by RNAHybrid (Rehmsmeier et al., 2004). Boxed sequences show the seed sequence alignments. (C) Note that a single nucleotide polymorphism (SNP) is present in the predicted MRE (m6) of the cloned smo 3^{\prime} UTR. Genomic sequences were verified by sequencing and confirmed that the SNP is real and not the result of a PCR error. The SNP is labeled with red colored font.

Figure S2. Adult wing phenotypes. (A) Wild-type wing. L3 and L4 are two major veins that mark the A-P boundary of the wing. (B) miR-14 mutant wing. (C) Overexpression of miR-14 using sd-Gal4, which is uniformly expressed throughout the wing pouch, results in small wing. (D-D') RNAi against ptc at the A-P boundary causes overgrowth of the region, resembling hyperactivation of Hh signaling. (E-E') Overexpression of miR-14 reduces the distance between veins L3 and L4 (marked by arrowhead). (F-F') Overexpression of ptc at the A-P boundary phenocopies overexpression of miR-14. (GG') Overexpression of miR-14 along with UAS-ptc-RNAi at the A-P boundary partially phenocopies overexpression of miR-14 alone. Note the slight curving of L 4 vein towards
the anterior direction of the wing (marked by asterisk) (G'). (H) RNAi against smo in the posterior compartment by hh-Gal4 does not disrupt the development of the wing. (I) Reducing the level of smo in the A-P region results in a clear decrease in the L3 and L4 intervein region (marked by asterisk), consistent with reduced Hh signaling. (J) Overexpression of miR-14 in the A compartment reduces the overall size of the A compartment causing the wing to curve in the anterior direction (marked by arrowhead).

Figure S3. Comparing the miRNA activities of $p A c$ and UAS-dsRed vectors. Both pAc and UAS-dsRed-miR-9a are equally effective at repressing the senseless 3' UTR luciferase reporter activity.

SUPPLEMENTAL TABLES

Genes	3' UTR (bp)	Forward Primer	Reverse Primer
cubitus interruptus (ci) (FBgn0004859)	279	CgGaittcanaitgitatctagctancac	CCGAgCtcgccgetattangggcanait
casein kinase la (CKla) (FBgn0015024)	1,341	CGGAATTCGAGCTGCAGCGCattcagacg	CCGAGCTCAATTAAATGTTGGGGCTCAAAT
costa (Cos2) (FBgn0000352)	1,033	CGGAATTCATACGAATTTAACCATtTCCA	CCGAGCTCTGATTAAACACTGATTGATTAGT
Fused (Fu) (FBgn0001079)	774	СTAGСтAGCCCGGCACtTTCTTTTATTGG	CCGAGCTCCACCATAGAGCCATTGGTGA
shaggy (GSK3) (FBgn0003371)	1,016	CGGAATTCGGGAAATAGTAACATACATAC	CCGAGCTCAAACAGTTTCGCTTTCGCTTTTGCT
hedgehog (hh) (FBgn0004644)	569	CGGAATTCGATGGAATCCTGGAAGAGCGA	c¢Gagctcgcgctcatttgantancctga
patched (ptc) (FBgn0003892)	874	CGGAAtTCCACTAGCACtagttcctatag	
$\begin{gathered} \text { smoothened (smo) } \\ \text { (FBgn0003444) } \end{gathered}$	654	CGGAATTCCAAGACTAAATAAGCAATTGATGC	CCGAGCTCTtAAAGCAAGGCTAGGACTCG
Suppressor of fused (Su(fu)) (FBgn0005355)	159	CGGAATTCTGGTGTCCATTGGTTAGCTAGT	CCGAGCTCATCAAAGGCCCGTCGAGT

Table S1. List of Hh pathway genes, the size and the primer sequences used to amplify the 3^{\prime} UTRs used in the screen. Red colored sequence represents restriction sites and green colored sequence represent flanking sequences added for efficient restriction enzyme digestion.

Supplemental Tables S2-S4 are provided as Microsoft Excel Files

Table S2. List of miRNA overexpression plasmids used for the screen and normalized luciferase levels from three separate experiments for 9 Hh pathway genes. For each miRNA-target interaction pair, a negative log2 median fold-change (LMF) score was calculated, where the higher LMF score corresponds to stronger repression of the target gene by the miRNA.

Table S3. Compiled list of miRNAs predicted to regulate 3' UTRs of Hh pathway components from the screen. For each predicted miRNA-target pair, confidence score assigned by individual tools were extracted. We used the least stringent cutoff values for each tool to compile all possible miRNA-target predictions. High confidence miRNAtarget interaction scores for each tool are: TargetScan, Branch-Length score ≥ 0.8; miRanda, mirSVR score ≤-0.5; and DIANA, miTG score ≥ 0.5.

Table S4. Analysis of the true positive rate (TRP) and false positive rate (FPR) values for various LMF score cutoff values using positive reference set (PRS) and random reference set (RRS).

