

Supplementary Figure 1: Relationship between 49 RNAi screens. The heat map shows the fraction of hits overlapping between the screens. Average overlap between screens is 14%.

Supplementary Figure 2

Supplementary Figure 2: ROC plots comparing performance of sign score against random and real phenotype matrix (RNAi signatures). The predictive performance of sign score is compared with real and random data. The random data refers to randomized phenotype matrix, where the signatures are preserved but the genes IDs are randomly permuted. The TPR and FPR values are computed at various sign score cutoff values for both the real and random dataset. In the ROC plot the green and black line corresponds to random and real dataset set respectively. Note that the green line is an average of 100 random datasets.

Supplementary Figure 3: ROC plots comparing the subset of reference interactions and comparing performance of positive and negative interactions. A) ROC plot corresponding to the performance of reference set derived from different signaling pathways (number of interactions in KEGG is 36, STKE is 15 and SignaLink is 77). Figure shows that the sign prediction model has similar predictive power for reference sets derived from different signaling pathway databases. B) ROC plot corresponding to the positive and negative edge sign predictions. The blue line corresponds to performance of positive interactions are 67 and a negative interactions are 39).

Supplementary Figure 4: continued

Supplementary Figure 4: Robustness of sign score prediction performance.

- A) Estimated the accuracy of the sign prediction models with various number RNAi screens ranging from minimum of 2 screens to maximum of 49 screens. The accuracy value shows the proportion of true predictions from total prediction and it is computed as accuracy = (TP + TN) / (TP + FP + FN + TN). For each screen cutoff value, 100 random subsets were sampled and the mean and standard deviation of the accuracy value was computed. The plot shows mean accuracy value against the number of screens. Note the accuracy is computed at sign score cutoff of ≥ 1 or ≤ -1 .
- B) Analysis same as above (A). For each screen cutoff average number of reference interaction recovered and standard deviation is computed and plotted.
- C) Density scatter plot showing the lack of correlation between the accuracy and the similarity between the RNAi screens (Pearson's correlation = 0.07). 9 RNAi screens are randomly sampled and the average overlap between the screens and accuracy values at sign score cutoff ≥ 1 or ≤ -1 was computed. Repeated this random sampling 10,000 times and plotted the accuracy against average overlap between the screens. The red dotted line is regression line showing no correlation.
- D) Analysis same as above (C). Number of reference interaction recovered is plotted against average overlap between the screens. The red dotted line is regression line showing positive correlation (Pearson's correlation = 0.56).
- E) Density scatter plot showing the lack of correlation between accuracy and average hit frequency in RNAi screens. 9 RNAi screens are randomly sampled and the average hit frequency and accuracy values at sign score cutoff ≥ 1 or ≤ -1 was computed. Repeated this random sampling 10,000 times and plotted the accuracy vs. RNAi hit frequency. The red dotted line is regression line showing no correlation.
- F) Analysis same as above (E). Number of reference interaction recovered is plotted against average hit frequency in RNAi screens. The red dotted line is regression line showing positive correlation.

Supplementary Figure 5: Correlation between the node degree (number of neighbors) and the number of phenotypes a gene regulates. The positive correlation could be due to the fact that a gene regulating multiple phenotypes has a higher chance of scoring with other interacting proteins.

Supplementary Figure 6: Network properties of the signed network. The full network and sub-networks with positive or negative interactions show similar degree distribution, and node betweenness centrality. However, clustering coefficient vs. number of neighbors shows striking difference between positive and negative edges.

Supplementary Figure 7: Correlation of edge signs and gene expression correlation. We observe significant differences in expression correlation with respect to edge betweenness-centrality. Both positive and negative interactions with low edge betweenness-centrality tend to shows positive PCC than high edge betweenness-centrality (p-value 2.2e-6 and 6.635e-05 respectively; Wilcox test).

Supplementary Figure 8: Network representation of signed PPIs connecting known signaling pathways and protein complexes (Fig. 3 continued).

Supplementary Figure 9: Quantification of RNAi knockdown. mRNA expression levels following two days of knockdown in S2R+ cells were analyzed by quantitative RT-PCR (see experimental procedures). For each experiment, mRNA levels from knockdowns were normalized to lacZ RNAi controls. The following dsRNAs were used for knockdown: CG32039 (DRSC08982); polo (DRSC38944); Pomp (DRSC03201); GNBP2 (DRSC10404); Eno (DRSC00750); MRP (DRSC02942); Hsc70Cb (DRSC26538); CG15717 (DRSC34144); mts (DRSC03574); Rpn1 (DRSC32192); CSN4 (DRSC07350); CG10638 (DRSC42172). Error bars indicate the SEM.

Supplementary Figure 10: Quantitation of ubiquitin expression. mRNA expression levels of two ubiquitin genes (Ubi-p5E and Ubi-p63E) following Eno (DRSC00750) or CG10638 (DRSC42172) knockdown. For each gene, mRNA levels after two days of knockdown in S2R+ cells were analyzed by quantitative RT-PCR, and normalized to lacZ RNAi controls. Knockdown of Eno or CG10638 had no significant effect on ubiquitin expression. Error bars indicate the SEM.

Supplementary Figure 11: Snapshot of the SignedPPI database. The features of input and output pages are highlighted. Users can query the database with a single gene, list of genes, proteins, a list of genes or proteins associated with experimental values (e.g. Z-score or fold-change values), or with a list of interacting pair of genes or proteins. Once the user uploads data, the tool generates a network with positive and negative interactions connecting the input list. To get more information about the edge signs, the user can click on the edges and the corresponding information including the phenotype vectors is displayed. To expand the network, the user can double click a node, which then adds direct neighbors to the selected node. The tool uses sign score as a function to zoom in or out of the network. For example, after zooming out, the tool displays only the core network with maximum sign score, whereas zooming in reveals more details on edges with moderate sign score. If the user uploads new *Drosophila* PPIs, the tool predicts signs based on the 49 RNAi screens stored in the server. In this case, instead of retrieving the stored signed PPI, signs are predicted for the user input data.

#	Phenotypes	Number of genes with phenotype	References	Source databases
1	Wingless (1)	471	5	DRSC
2	Protein Secretion Gogi	660	6	DRSC
3	Cell Growth (S2R+ cells)	961	7	DRSC
4	Cell Growth (Kc cells)	1178	7	DRSC
5	MAPK regulators (EGF baseline, S2R+ cell)	2204	8	DRSC
6	MAPK regulators (EGF 10min, S2R+ cell)	1495	8	DRSC
7	MAPK regulators (EGF 10min, Kc167 cell)	2259	8	DRSC
8	MAPK regulators (EGF 30min, Kc167 cell)	2085	8	DRSC
9	MAPK regulators (Insulin baseline, S2R+ cell)	3140	9	DRSC
10	MAPK regulators (Insulin 10min, S2R+ cell)	2144	9	DRSC
11	Apoptotic regulators	1549	10	DRSC
12	CRYZ degradation	1557	11	DRSC
13	E2FZ	1604	12	DRSC
14	Hedgehog	1610	13	DRSC
15	JAK STAT (1)	1760	14	DRSC
16	Calcium storage	2100	15	DRSC
17	Calcium entry	3012	16	DRSC
18	Somatic homolog pairing (dod)	274	10	DRSC
19	Somatic homolog pairing (359)	234	10	DRSC
20	Wnt proteins secretion	17	17	GenomeRNAi
21	Hedgehog signaling (2)	19	18	GenomeRNAi
22	Toll dependent immune response	28	19	GenomeRNAi
23	Innate immunity (1)	29	20	GenomeRNAi
24	B. melitensis infection	61	21	GenomeRNAi
25	Wg pathway regulation (3)	63	22	GenomeRNAi

Supplementary Table 1: List of RNAi screens used to construct the phenotypic matrix. The screens were collected from *Drosophila* RNAi Screening Center $(DRSC)^1$, GenomeRNAi², Neuroblasts Screen online database $(IMBA - I)^3$ and Bristle Screen online database $(IMBA - II)^4$.

26	JAK STAT pathway (2)	67	23	GenomeRNAi
27	Innate immunity (2)	115	24	GenomeRNAi
28	Akt TOR regulation	134	25	GenomeRNAi
29	Notch induced transcription	149	26	GenomeRNAi
30	C. trachomatis infection	219	27	GenomeRNAi
31	Methyl methanesulphonate	391	28	GenomeRNAi
32	Adiposity regulation	512	29	GenomeRNAi
33	Huntingtin aggregation	514	30	GenomeRNAi
34	Heat Nociception	720	31	GenomeRNAi
35	Notch pathway regulation	899	32	GenomeRNAi
36	PGN induced dJNK	993	33	GenomeRNAi
37	Serratia marcescens infection	1176	34	GenomeRNAi
38	Lipid Storage	5071	35	GenomeRNAi
39	Cell Size	272	3	IMBA – I
40	Cell Death	556	3	IMBA – I
41	Bristles loss/gain	667	4	IMBA – II
42	Bristles proliferation	1499	4	IMBA – II
43			³⁶ , Neumuller et al.,	
	Unpublished phenotype 1	837	unpublished	Unpublished
44			³⁶ , Neumuller et al.,	
	Unpublished phenotype 2	1201	unpublished	Unpublished
45			³⁶ , Neumuller et al.,	
	Unpublished phenotype 3	1236	unpublished	Unpublished
46			³⁶ , Neumuller et al.,	
	Unpublished phenotype 4	1344	unpublished	Unpublished
47			³⁶ , Neumuller et al.,	
	Unpublished phenotype 5	1392	unpublished	Unpublished
48			³⁶ , Neumuller et al.,	
	Unpublished phenotype 6	1752	unpublished	Unpublished
49	,,		³⁶ , Neumuller et al	
	Unpublished phenotype 7	2014	unpublished	Unpublished
	· · · //-		1 · · ·	

Supplementary Table 2: Signaling PPIs with known signs collected from three major signaling pathway databases. The pairs with two or more matching phenotypes in the phenotypic matrix were selected for validation. Each signaling PPI dataset was downloaded from the corresponding website and the database version corresponds to the March 2012 release.

Pathway databases	interactions with signs	
	Total interactions	Interactions with ≥ 2 matching phenotypes
SignaLink ³⁷ http://signalink.org/	220	85
KEGG ³⁸ http://www.genome.jp/kegg/pathway.html	194	46
STKE http://stke.sciencemag.org/cm/	94	16

Supplementary Table 3: List of 106 signaling PPIs used as reference interactions in PRS and NRS. Signaling PPIs with known signs are collected from three major signaling pathway databases. After compiling the reference PPIs, the signs are manually curated by checking with appropriate literature. The sign from source database, sign in PRS and NRS are shown.

Gene A	Gene B	Source Sign	Sign in PRS	Sign in NRS	Source
gish	Ci	-	-	+	KEGG
bib	DI	+	+	-	SignaLink
Sara	Flw	+	+	-	SignaLink
dome	Нор	+	+	-	SignaLink
Atg12	Atg7	+	+	-	KEGG
Pten	Pdk1	-	-	+	SignaLink
Cas	C3G	+	+	-	STKE
slpr	Нер	+	+	-	SignaLink
PEK	eIF-2alpha	+	+	-	KEGG
Myt1	cdc2	-	-	+	KEGG
Mkk4	Bsk	+	+	-	SignaLink
sgg	Jra	-	-	+	SignaLink
sgg	Tim	+	+	-	STKE
Egfr	Shc	+	+	-	SignaLink
Egfr	Drk	+	+	-	KEGG;SignaLink
pnt	Br	-	-	+	KEGG
gig	Rheb	-	-	+	KEGG
phl	Нро	-	-	+	SignaLink
phl	Dsor1	+	+	-	SignaLink
ksr	Phl	+	+	-	SignaLink
ci	Nej	+	+	-	SignaLink
ird5	Tsc1	-	-	+	KEGG
Akt1	S6k	+	+	-	SignaLink
Akt1	Gig	-	-	+	KEGG
Tab2	Tak1	+	+	-	SignaLink
Axn	Arm	-	-	+	STKE;SignaLink
tws	Akt1	-	-	+	SignaLink *
Su(var)2-10	Stat92E	-	-	+	KEGG;SignaLink
cno	Ras85D	-	-	+	SignaLink
DI	N	+	+	-	KEGG;SignaLink
smo	Pka-C1	+	+	-	SignaLink
smo	Cos	-	-	+	STKE;SignaLink
Rheb	Tor	+	+	-	KEGG
Н	N	-	-	+	SignaLink
rdgC	ninaE	+	+	-	KEGG
drk	Sos	+	+	-	KEGG;SignaLink
Gcn2	eIF-2alpha	+	+	-	KEGG
hh	Ptc	-	-	+	KEGG;STKE;SignaLink

slmb	Arm	-	-	+	STKE;SignaLink
slmb	Ci	-	-	+	KEGG;STKE;SignaLink
Wnt10	fz2	+	+	-	KEGG
Pka-C1	Cklalpha	+	+	-	SignaLink
Pka-C1	Smo	+	+	-	SignaLink
mad2	fzr2	-	-	+	KEGG
CSW	PhI	+	+	-	KEGG
scw	Sax	+	+	-	SignaLink
Ilp5	InR	+	+	-	STKE;SignaLink
Gap1	Ras85D	-	-	+	KEGG
fu	Ci	+	+	-	SignaLink
fu	Su(fu)	-	-	+	SignaLink
Cklalpha	Arm	-	-	+	STKE:SignaLink
Cklalpha	Slmb	+	+	-	SignaLink
aux	DI	+	+	-	SignaLink
gbb	Sax	+	+	-	SignaLink
ttv	Hh	+	+	_	SignaLink
Sos	Ras85D	+	+	_	KEGG:Signal ink
Boc1a	Ci	-	-	+	Signal ink
Roc1a	Simh	+	+	-	Signal ink
Pdk1	Sek	· •	· +	_	STRE
Pdk1	Δ <i>μ</i> +1	, 	, т		STKE
FUK1		+	+		Signalink
	Ла	+	+	-	VECC
PK92D Sha	Hep Drk	+	+	-	KEGG:Signal ink
	Drk Dah11	+	+	-	KEGG;SignaLink
secis		+	+	-	SignaLink
СПК	Phi	+	+	-	SignaLink
neur	DI	+	+	-	SignaLink
upd2	Dome	+	+	-	SignaLink
nmo	Pan	-	-	+	SignaLink
Tom	Neur	-	-	+	SignaLink
Cul-3	Ci	-	-	+	SignaLink
hop	Stat92E	+	+	-	SignaLink
Rho1	Rok	+	+	-	KEGG
SNF1A	Tor	-	-	+	KEGG
CG9175	sar1	+	+	-	KEGG
lqf	Ser	+	+	-	SignaLink
sty	Gap1	+	+	-	SignaLink
Dsor1	RI	+	+	-	KEGG;SignaLink
rl	Lk6	+	+	-	SignaLink
rl	Pnt	+	+	-	SignaLink
rl	Gig	-	-	+	KEGG
Su(H)	Н	-	-	+	SignaLink *
star1	Spi	+	+	-	SignaLink
rasp	Spi	+	+	-	SignaLink
Psn	Arm	+	+	-	KEGG

Psn	Ν	+	+	-	SignaLink
upd3	Dome	+	+	-	SignaLink
arm	Pan	+	+	-	STKE;SignaLink
рудо	Arm	+	+	-	STKE;SignaLink
wntD	fz2	+	+	-	KEGG
lin19	Slmb	+	+	-	SignaLink
Gprk1	ninaE	-	-	+	KEGG
Socs36E	Нор	-	-	+	KEGG;SignaLink
COS	Pka-C1	+	+	-	SignaLink
rl	Cic	-	-	+	SignaLink *
Atg8b	Atg7	+	+	-	KEGG
lin19	Ci	-	-	+	SignaLink
bib	N	+	+	-	SignaLink
S6k	Chico	-	-	+	KEGG
Cbl	Egfr	-	-	+	SignaLink
Akt1	Foxo	-	-	+	SignaLink
Stam	Нор	+	+	-	KEGG;SignaLink
Mkp3	RI	-	-	+	SignaLink
nej	Pan	-	-	+	STKE;SignaLink
chico	Drk	+	+	-	SignaLink
Н	CtBP	+	+	-	SignaLink
Ckllbeta	Per	-	-	+	STKE

* signs from original database is changed based on the literature curation.

Phenotyne matrix	Number of interactions	ROC area under curve
Published	93	0.857
Unpublished	15	0.855

106

0.858

Supplementary Table 4: Validation of the performance using subsets of phenotype matrices. Number of PPIs in PRS and the performance (ROC area) are highlighted for each subset of RNAi screens.

Supplementary Table 5: Performance of the classifiers trained to predict signs of interactions. Classifiers implemented in weka software³⁹ were used to train and test. All 49 RNAi screens were directly used as features. Note that poor performance of the classifiers could be due to sparseness of the phenotype matrix (missing values).

Classifiers	ROC area under curve from 10 fold cross validation			
	Positive interactions	Negative interactions		
NaïveBayes	0.6	0.6		
MultilayerPerceptron	0.657	0.67		
RandomForest	0.65	0.695		

Combined

Supplementary Table 6: PPI datasets used to construct *Drosophila* integrated PPI network (MasterNet). Names of the datasets, publication references, URL, and number of PPIs and proteins in the dataset are listed. All the PPI datasets are downloaded from the corresponding website and the database version corresponds to the September 2012 release. In the integrated network the gene/protein identifiers from the corresponding databases are mapped to Flybase gene IDs.

PPI datasets	Interactions	Proteins
BioGrid ⁴⁰ http://thebiogrid.org/	23916	7305
IntAct ⁴¹ http://www.ebi.ac.uk/intact/	25385	7530
DIP ⁴² http://dip.doe-mbi.ucla.edu/dip/Main.cgi	19753	6584
MINT ⁴³ http://cbm.bio.uniroma2.it/mint/	17336	5917
DroID ⁴⁴ http://www.droidb.org/	87070	9068
Drosophila AP-MS dataset (DPiM) ⁴⁵ https://interfly.med.harvard.edu/	10964	2296
MasterNet (integrated network)	98500	9373
Network with potential direct interactions	47293	9107

Supplementary Table 8: Functional enrichment analysis of hub proteins. Proteins with 5 or more interactions were considered hubs. Hubs were classified as: 1) hubs with primarily positive interactions (≥ 75% of interactions are positive interactions); 2) hubs with primarily negative interactions (≥ 75% of interactions are negative interactions); or 3) hubs with both positive and negative interactions. Gene Ontology functional enrichment analysis was performed with GO::TermFinder⁴⁶ and GO annotation was downloaded from GO database (excluding IEA annotations).

			Number	GO term
Hub type	GO ID	P-value	of genes	
	GO:0003712	5.76E-19	29	transcription cofactor activity
Hubs with	GO:0016462	3.24E-16	57	pyrophosphatase activity
primarily	GO:0004175	1.49E-08	35	endopeptidase activity
positive	GO:0008553			hydrogen-exporting ATPase activity,
Interactions		6.70E-08	14	phosphorylative mechanism
				ATPase activity, coupled to
	GO:0042625	1.51E-06	15	transmembrane movement of ions
	GO:0001104	1.86E-19	21	RNA polymerase II transcription cofactor activity
				translation factor activity. nucleic
	GO:0008135	0.0003	12	acid binding
	GO:0003682	0.0014	12	chromatin binding
	GO:0004672	0.0004	24	protein kinase activity
	GO:0019199	0.0014	7	transmembrane receptor protein
				kinase activity
	GO:0003678	0.0025	8	DNA helicase activity
	GO:0004579	0.0064	3	dolichyl-diphosphooligosaccharide-
				protein glycotransferase activity
	GO:000983	0.0060	6	RNA polymerase II core promoter
				sequence-specific DNA binding
				transcription factor activity
	GO:0022890	0.0275	18	inorganic cation transmembrane
				transporter activity
	GO:0015405	0.0070	15	P-P-bond-hydrolysis-driven
				transmembrane transporter activity
	GO:0008233	7.72E-05	35	peptidase activity
	GO:0004386	0.0172	12	helicase activity
	GO:0070011	4.55E-05	35	peptidase activity, acting on L-amino
				acid peptides
	GO:0042813	5.55E-06	5	Wnt-activated receptor activity
	GO:0005024	0.0009	4	transforming growth factor beta-
				activated receptor activity
	GO:0003743	0.0214	8	translation initiation factor activity
Hubs with	GO:0003714	0.0025	3	transcription corepressor activity
primarily	GO:0003735	0.0050	6	structural constituent of ribosome
negative				
interactions				

Hubs with	GO:0003735	4.53E-09	24	structural constituent of ribosome
both	GO:0003729	2.90E-08	20	mRNA binding
positive and	GO:0004672	4.42E-08	23	protein kinase activity
negative	GO:0004674	1.00E-07	19	protein serine/threonine kinase
interactions				activity
	GO:0016773	1.79E-06	23	phosphotransferase activity, alcohol
				group as acceptor
	GO:0008092	1.95E-05	17	cytoskeletal protein binding
	GO:0019787	0.0323	7	small conjugating protein ligase
				activity
	GO:0005523	0.0008	3	tropomyosin binding
	GO:0004712	0.0009	4	protein serine/threonine/tyrosine
				kinase activity
	GO:0016772	2.77E-05	25	transferase activity, transferring
				phosphorus-containing groups
	GO:0003724	0.0341	6	RNA helicase activity
	GO:0016538	0.0013	5	cyclin-dependent protein kinase
				regulator activity
	GO:0008026	0.0047	8	ATP-dependent helicase activity
	GO:0070035	0.0047	8	purine NTP-dependent helicase
				activity
				actin binding
	GO:0003779	0.0206	9	
	GO:0019887	0.0381	6	protein kinase regulator activity
	GO:0019207	0.0472	6	kinase regulator activity

Supplementary Table 9: Enrichment analysis of triad motifs using FANMOD tool⁴⁷. FANMOD was downloaded from http://theinf1.informatik.uni-jena.de/~wernicke/motifs/ and locally installed. The signed PPI is used as input and network treated as colored edges. Enrichment analysis for sub graph size 3 against 1000 random network (default values are used for other parameters).

Motif	Frequency	Mean Frequency	Standard Deviation	Z-Score	p-value
	(Real network)	(Random network)	(Random network)		
\land	7.1746%	0.0023557%	3.5649e-005	2011.9	0
	43.715%	56.427%	6.6871e-005	-1901	1
	36.951%	33.212%	6.516e-005	573.82	0
\sim	11.359%	10.346%	2.2643e-005	447.41	0
	0.60048%	0.0035386%	2.4485e-005	243.8	0
Δ	0.187%	0.0085829%	4.0937e-005	43.584	0
Δ	0.012467%	6.6335e-005%	3.6602e-006	33.879	0

		Conserved interactions		Potential in	iterolog	Not conserved		
Interactions	Total PPIs	PPIs	Percent	PPIs	Percent	PPIs	Percent	
All PPIs	6125	1006	16.4%	4431	72.3%	688	11.2%	
Disease PPIs	2024	321	15.8%	1567	77.4%	136	6.7%	

Supplementary Table 11: Conserved and disease-related signed PPIs

Supplementary Table 12: Results from RNAi screen in *Drosophila* primary embryonic muscle cells.

Gene			Replic	cates	Median		
Symbol	Amplicon ID	1	2	3	4	Value	Comments
Cha	DRSC34418	0.840	0.628	0.596	0.424	0.612	Docitivo
CIIC	DRSC34419	0.599	0.777	0.409	0.603	0.601	Positive
	DRSC20229	-0.263	-0.214	-0.379	-0.280	-0.271	regulator
Chindly	DRSC31559	-0.087	0.154	-0.219	-0.269	-0.153	
Spinuly	DRSC31558	0.053	0.220	0.058	-0.334	0.055	Not scored
	DRSC00430	0.131	-0.033	0.247	-0.354	0.049	
	DRSC33361	0.196	0.241	0.240	0.218	0.229	
Tbp-1	DRSC26269	0.743	0.661	0.565	0.686	0.673	Core
	DRSC16842	0.774	0.906	0.833	0.494	0.803	component
	DRSC33360	0.732	1.084	0.550	0.851	0.792	
Droc20	DRSC32170	0.884	1.094	0.675	0.783	0.833	Coro
P10529	DRSC04644	0.786	0.571	0.549	0.289	0.560	component
	DRSC32171	1.199	0.724	0.825	0.616	0.774	component
6622020	DRSC08982	-0.291	-0.319	-0.367	-0.622	-0.343	Negativo
CG32039	DRSC35191	-0.577	-0.636	-0.820	-0.965	-0.728	rogulator
	DRSC28597	-0.709	-0.700	-0.876	-0.670	-0.705	regulator

Description 5	DRSC32184	0.138	0.328	0.045	-0.468	0.091	6	
Prosalpha5	DRSC32185	0.859	0.520	0.422	0.639	0.580	Core	
	DRSC07514	0.670	0.686	0.417	0.455	0.563	component	
	DRSC25951	0.610	0.813	1.070	0.965	0.889		
Rpn7	DRSC32204	0.723	1.010	0.572	0.342	0.647	Core	
	DRSC32205	0.359	0.339	0.144	-0.543	0.241	component	
	DRSC16841	0.634	0.743	0.837	0.850	0.790		
6617001	DRSC31563	0.655	0.524	0.365	0.522	0.523	Carro	
CG1/331	DRSC02603	0.578	0.617	0.337	0.430	0.504	Core	
	DRSC31562	0.222	0.475	-0.320	0.196	0.209	component	
	DRSC30791	-0.539	-0.509	-0.469	-0.532	-0.521		
Cdk4	DRSC07358	0.432	0.669	-0.137	0.208	0.320	No clear	
	DRSC30790	-0.137	-0.078	-0.343	-0.221	-0.179	phenotype	
	DRSC27263	-0.558	-0.505	-0.488	-	-0.505		
	DRSC11384	-0.760	0.129	-0.175	0.082	-0.046		
	DRSC34464	0.037	0.070	0.151	-0.315	0.054		
polo	DRSC38944	0.436	0.577	0.539	0.424	0.487	Positive	
•	DRSC37001	0.624	0.723	0.596	0.450	0.610	regulator	
	DRSC34463	0.581	0.960	0.418	0.642	0.611		
	DRSC22359	0.754	0.515	-0.098	0.540	0.527		
	DRSC16801	0.515	0.769	0.466	0.601	0.558		
Prosbeta3	DRSC32181	0.661	0.769	0.754	0.660	0.707	Core	
	DRSC32180	0.809	1.230	0.800	0.825	0.817	component	
	DRSC38439	0.875	0.858	0.785	0.395	0.822		
	DRSC32101	0.048	0.102	0.266	-0.083	0.075		
Rpn3	DRSC32102	0.965	0.787	0.961	0.600	0.874	Core component	
	DRSC03318	0.671	0.806	0.662	0.435	0.667		
	DRSC29446	0.198	-0.016	0.226	-0.181	0.091		
	DRSC32199	0.713	0.654	0.618	0.711	0.683		
Dura 2	DRSC16839	0.787	1.121	1.005	-0.814	0.896	Com	
Rpnz	DRSC38457	0.816	1.229	0.916	0.542	0.866	Core	
	DRSC38456	1.069	0.829	0.702	0.749	0.789	component	
	DRSC32198	0.091	0.055	-0.033	0.135	0.073		
	DRSC29365	0.760	0.412	0.595	0.640	0.617		
Prosalpha7	DRSC32177	0.803	0.899	0.561	0.790	0.797	Core	
	DRSC32176	0.270	0.201	-0.143	0.447	0.236	component	
	DRSC07516	0.085	0.381	-0.151	0.207	0.146		
Deren	DRSC32165	0.544	0.525	0.337	0.532	0.529	Desitive	
Pomp	DRSC27581	-0.145	0.276	-0.082	-0.045	-0.064	Positive	
	DRSC03201	0.797	0.561	0.436	0.606	0.584	regulator	
D	DRSC32175	0.611	0.770	0.794	0.552	0.690	6	
Pros54	DRSC32174	0.731	0.711	0.594	0.338	0.652	Core	
	DRSC11876	1.144	0.893	0.649	0.654	0.774	component	
Dr	DRSC32173	0.697	0.812	0.496	0.259	0.596	Carra	
Pros35	DRSC32172	0.662	0.599	0.518	0.643	0.621	Core	
	DRSC03401	0.845	0.910	0.665	0.758	0.802	component	

	DRSC23412	0.700	0.732	0.636	0.491	0.668		
Rpt3	DRSC32208	0.372	-0.097	-0.225	0.170	0.036	Core	
	DRSC20283	0.317	0.270	0.008	0.304	0.287	component	
	DRSC32209	0.996	0.918	0.660	0.553	0.789		
5 4 4 5	DRSC31664	-0.671	-0.655	-0.579	-0.738	-0.663		
RpL40	DRSC42173	-0.519	-0.418	-0.679	-0.643	-0.581	Negative	
	DRSC00782	0.285	0.203	0.210	0.481	0.248	regulator	
CNIDDO	DRSC42164	-0.091	0.086	0.456	0.209	0.147		
GNBP2	DRSC10404	0.072	0.489	-0.009	0.108	0.090	Not scored	
	DRSC42165	0.469	0.204	-0.395	0.229	0.217	-	
	DRSC32166	0.507	0.840	0.453	0.689	0.598		
Pros25	DRSC16798	0.147	-3.305	-0.417	-0.629	-0.523	Core	
	DRSC28078	0.279	0.336	-0.429	0.205	0.242	component	
	DRSC32167	0.179	0.776	0.271	0.191	0.231		
Duric	DRSC32203	0.431	-0.225	-0.277	0.082	-0.071	C	
крпб	DRSC07541	0.563	0.621	0.444	0.309	0.503	Core	
	DRSC32202	0.799	0.885	0.888	0.834	0.860	component	
	DRSC16799	0.753	0.842	0.425	0.647	0.700		
Pros26.4	DRSC25012	0.355	0.706	0.304	0.359	0.357	Core	
	DRSC32051	1.053	1.033	0.543	0.639	0.836	component	
	DRSC32052	0.848	0.915	0.740	0.676	0.794		
_	DRSC00750	0.257	0.013	0.325	-0.461	0.135	D	
Eno	DRSC42167	0.573	0.510	0.114	-0.226	0.312	Positive	
	DRSC42166	0.535	0.602	0.419	0.364	0.477	regulator	
	DRSC28939	0.099	0.235	0.202	0.110	0.156		
Prosbeta5	DRSC07517	0.905	0.990	0.962	0.682	0.934	Core component	
	DRSC32182	0.461	0.403	0.335	0.263	0.369		
	DRSC32183	0.599	1.135	0.808	0.561	0.704		
	DRSC39503	-0.946	-1.101	-0.946	-0.925	-0.946		
MRP	DRSC39210	-0.310	-0.350	-0.519	-0.420	-0.385	Negative	
	DRSC02942	-0.528	-0.660	-0.575	-0.464	-0.552	regulator	
	DRSC40861	-0.211	-0.474	-0.445	-0.413	-0.429		
	DRSC40683	0.022	0.073	-0.211	-0.304	-0.095		
ATPsyn-beta	DRSC34212	0.281	0.355	-0.228	0.155	0.218	Notcorrod	
	DRSC40016	0.072	0.278	-0.170	0.315	0.175	Not scored	
	DRSC17194	-0.541	-0.249	-0.352	-0.280	-0.316		
	DRSC11186	0.391	0.565	0.110	0.388	0.389		
Hsc70Cb	DRSC26538	0.433	0.312	0.481	0.263	0.373	Positive	
	DRSC34558	0.711	0.652	0.337	0.109	0.495	regulator	
	DRSC34557	0.725	0.602	0.159	0.505	0.554		
Rpn12	DRSC32197	0.602	0.724	0.465	0.509	0.556		
	DRSC32196	0.642	0.593	0.433	0.458	0.525	Core	
	DRSC28589	0.559	1.041	0.976	0.472	0.768	component	
	DRSC11275	0.226	0.248	0.300	-0.130	0.237]	
Rpt4	DRSC32210	-0.012	0.260	-0.173	-0.188	-0.093	Core	
	DRSC32211	-0.080	-0.067	-0.084	-0.154	-0.082	component	

	DRSC18713	0.813	0.536	0.436	0.582	0.559		
Drachata7	DRSC32030	0.335	0.607	0.135	0.115	0.235	Coro	
Prospeta/	DRSC32029	0.790	0.676	0.637	0.584	0.657	Core	
	DRSC12186	0.240	0.568	-0.029	0.456	0.348	component	
	DRSC29897	1.190	1.415	0.750	0.642	0.970		
Mov34	DRSC04624	0.577	0.789	0.486	0.835	0.683	Core	
	DRSC32154	0.764	0.600	0.671	0.761	0.716	component	
	DRSC32153	0.909	0.969	0.596	0.531	0.753		
Due 200	DRSC32169	0.249	0.136	0.345	0.286	0.267	Cana	
Proszo	DRSC32168	1.030	1.000	0.590	0.757	0.878	Core	
	DRSC11256	0.327	0.413	0.231	0.081	0.279	component	
	DRSC12367	0.833	0.905	0.610	0.627	0.730		
Rpn5	DRSC32201	0.805	1.256	0.831	0.994	0.912	Core	
	DRSC32200	0.675	0.792	0.486	0.554	0.614	component	
	DRSC28279	0.595	0.701	0.958	0.338	0.648		
Durana A	DRSC03408	0.172	0.161	0.163	-0.337	0.162		
Drep-4	DRSC42168	0.252	0.216	-0.450	0.448	0.234	Not scored	
	DRSC42169	0.196	0.326	-0.399	0.214	0.205		
0045747	DRSC34144	-0.450	-0.161	-0.599	-0.465	-0.457	Nexaliza	
CG15717	DRSC19684	-0.513	-0.497	-0.530	-0.570	-0.522	Negative	
	DRSC34145	-0.254	0.487	0.028	0.275	0.152	regulator	
	DRSC32207	0.894	0.712	0.964	0.747	0.820	Core component	
Rpn9	DRSC27177	1.085	1.330	1.131	0.689	1.108		
	DRSC32206	0.327	0.250	0.311	-0.349	0.280		
	DRSC16840	0.329	0.188	-0.009	-0.232	0.090		
Dot1	DRSC30799	0.384	0.614	0.077	-0.109	0.231	Core component	
кри	DRSC07542	1.093	1.291	0.782	0.436	0.937		
	DRSC30800	0.210	0.473	-0.029	-0.053	0.090		
Drochota?	DRSC32179	0.772	0.725	0.865	0.427	0.749	Coro	
Prosperaz	DRSC32178	1.626	1.211	0.818	0.951	1.081	component	
	DRSC11257	0.636	0.607	0.743	0.755	0.690	component	
	DRSC36626	-0.147	0.100	-0.151	-0.304	-0.149		
mts	DRSC03574	0.314	0.417	-0.614	0.093	0.203	Not scored	
	DRSC30715	0.199	0.245	0.282	0.036	0.222	Not scored	
	DRSC30716	0.027	-0.154	-0.707	0.190	-0.064		
Don1	DRSC32193	0.565	0.696	1.033	0.562	0.630		
крпт	DRSC32192	0.543	0.483	0.340	0.362	0.422	Core	
	DRSC11274	0.676	1.031	0.695	0.332	0.685	component	
	DRSC38454	0.978	0.993	0.880	0.577	0.929		
CorllA	DRSC19861	-0.055	-0.279	-0.660	-0.121	-0.200		
Cpr11A	DRSC26786	-0.007	0.022	-0.045	0.187	0.007	Not scored	
	DRSC42174	0.152	-0.126	-0.285	0.258	0.013		
CC17830	DRSC24069	0.459	0.546	0.379	0.395	0.427		
CG1/829	DRSC18484	0.259	0.265	-0.511	0.042	0.151	Not scored	
	DRSC42177	-0.168	0.361	0.023	0.189	0.106		
Prosbeta1	DRSC32139	0.713	0.758	0.612	0.681	0.697	Core	

	DRSC07159	0.773	0.974	0.794	0.442	0.783	component
	DRSC32140	0.371	0.311	-0.443	0.672	0.341	
	DRSC28212	0.007	-0.147	-0.486	-0.743	-0.317	
CG5792	DRSC42176	-0.120	-0.408	-0.581	0.313	-0.264	Not coord
	DRSC41068	0.101	0.494	0.016	0.339	0.220	Not scored
	DRSC02897	0.051	-0.109	0.047	-0.322	-0.031	
	DRSC41049	0.219	0.413	0.247	-0.298	0.233	
	DRSC07560	0.689	0.591	0.834	0.235	0.640	Coro
TER94	DRSC32221	0.443	0.219	0.346	0.297	0.322	core
	DRSC32220	0.805	0.716	0.572	0.508	0.644	component
	DRSC27600	0.435	0.416	0.310	0.437	0.425	
CENIA	DRSC33300	0.498	-0.030	-0.460	0.224	0.097	
CSIN4	DRSC07350	0.133	0.073	-0.471	-0.366	-0.147	Not scored
	DRSC33301	-0.324	-0.156	-0.132	-0.033	-0.144	
CC10628	DRSC42172	-0.245	-0.469	-0.305	-0.596	-0.387	Negativo
CG10638	DRSC09762	-0.732	-0.673	-0.616	-0.873	-0.703	regulator
	DRSC29762	-0.379	-0.143	-0.687	-0.440	-0.409	regulator
000415	DRSC02954	-0.031	0.308	-0.154	-0.148	-0.090	
CG0415	DRSC29833	0.140	0.055	-0.002	0.010	0.033	Not scored
	DRSC42175	0.378	0.246	0.286	0.264	0.275	
CG13349	DRSC42170	0.277	-0.387	-0.220	0.113	-0.054	
	DRSC06379	0.111	0.476	0.171	0.084	0.141	Not scored
	DRSC42171	0.068	0.351	0.414	-0.277	0.210	
	DRSC32194	0.977	1.203	0.817	0.536	0.897	
Rpn11	DRSC32195	1.531	1.012	0.743	0.519	0.878	Core
	DRSC03422	1.000	0.734	0.545	0.664	0.699	component
	DRSC38455	0.853	1.430	0.767	1.068	0.960	

Replicates Median Gene 2 3 Symbol Amplicon ID 1 4 Value P value 0.6479 DRSC09762 0.2841 0.6287 0.4436 0.5391 0.0022 0.2240 0.4098 0.5796 0.1973 0.0126 DRSC29762 0.3199 CG10638 DRSC42172 0.0144 0.1618 0.4204 0.3062 0.2358 0.0484 0.2495 DRSC19684 0.1212 0.3108 0.1088 0.1868 0.0093 0.0255 0.0325 0.3722 -0.2302 0.0290 0.6267 CG15717 DRSC34144 DRSC34145 0.1570 -0.2003 0.0457 -0.1568 -0.0520 0.7235 0.1731 0.2093 DRSC08982 0.0326 0.1051 0.1395 0.0175 0.0295 CG32039 DRSC28597 -0.0162 -0.4545 -0.2218 -0.4007 -0.3085 0.4758 0.2706 0.2704 DRSC35191 0.2927 0.2817 0.0012 DRSC02942 0.0973 0.5699 0.3237 0.3835 0.3539 0.0174 MRP 0.0707 -0.0893 0.2595 0.4026 DRSC40861 0.0122 0.0417 DRSC39503 0.2887 0.3296 0.3379 0.2126 0.3093 0.0001 DRSC39210 0.5033 0.4273 0.3471 0.4398 0.4336 0.0000 -0.5079 DRSC00750 -0.6287 -0.8382 -0.7479 -0.6871 2.09E-05 -0.3286 -0.4528 -0.3435 -0.5163 -0.3971 Eno DRSC42167 4.18E-05 -0.6188 -0.6185 -0.1299 -0.2303 0.0142 DRSC42166 -0.4114 DRSC11186 -0.2537 -0.1110 -0.3177 -0.4216 -0.2854 0.0039 0.2459 -0.0593 0.0231 -0.0957 -0.0176 0.6808 DRSC26538 DRSC34558 Hsc70Cb -0.4697 0.2308 0.0414 0.1012 0.0716 0.9947 DRSC34557 -0.0293 0.1499 0.0116 -0.1318 -0.0087 0.0335 -0.0710 DRSC37001 -0.2135 -0.3155 -0.1625 -0.1878 0.0076 0.0350 -0.1888 0.2970 -0.0532 -0.0084 0.7629 DRSC38944 DRSC34464 -0.3006 -0.1035 0.0466 -0.3147 -0.1986 0.1013 polo DRSC34463 -0.4443 -0.4985 -0.3641 -0.4038 -0.4239 2.35E-06 DRSC03201 -0.8766 -0.5310 -0.9858 -1.0496 -0.9302 8.07E-05 Pomp DRSC27581 -0.5231 -0.2902 -0.5531 -0.6327 -0.5380 0.0002 DRSC32165 -0.7480 -0.2135 -0.4519 -0.6385 -0.5422 0.0025 -1.2649 -0.9095 DRSC11274 -1.1671 -0.6244 -1.0325 8.38E-05 DRSC38454 -0.6819 -0.4693 -0.5310 -0.5294 -0.5302 5.26E-06 DRSC32193 -0.7534 -1.1123 -0.6438 -0.4913 -0.6976 0.0003 Rpn1 DRSC32192 -0.3215 -0.4077 -0.0463 -0.3154 -0.3184 0.0116 -0.2470 -0.1476 -0.0677 -0.4086 -0.1964 DRSC07350 0.0193 CSN4 DRSC33300 0.0224 0.1258 -0.0556 0.1304 0.0750 0.2477 DRSC33301 0.1085 0.0781 0.3506 0.0482 0.0934 0.0932 DRSC10404 -0.2032 -0.1837 -0.0098 -0.1935 0.0586 -0.5036 GNBP2 DRSC42164 0.0279 -0.0482 0.4554 -0.0852 -0.0096 0.4809 0.1628 DRSC42165 0.1881 -0.0335 0.0181 0.0922 0.1689 DRSC03574 0.0653 0.1820 0.5003 0.2541 0.2185 0.0459 mts 0.0485 -0.4629 -0.2925 -0.2102 0.1013 DRSC36626 -0.1323 DRSC30715 -0.1026 -0.2135 -0.1919 -0.4807 -0.2026 0.0154

Supplementary Table 13: Results from the proteasome activity assay. The values correspond to log2 fold change over lacZ control.

DRSC30716

-0.3644

-0.9699

0.1579

-0.1984

0.2724

-0.0495

Supplementary Table 14: Details of PPIs connecting proteasome complex and novel proteasome regulators identified. ID1 and ID2 correspond to proteasome regulators and proteasome components, respectively. TAP: tandem affinity purification, Y2H: yeast two-hybrid

				Scree		PPI	PPI	Human
ID1	ID2	Sign	Score	ns	Coexpress	Assay	PubMed	ortholog
Eno	Prosbeta5	+	1.73	3	-0.06	ТАР	22036573	ENO1
polo	Pros25	+	2.23	5	0.26	Y2H	14605208	PLK1
Hsc70Cb	Pros54	+	2.20	5	0.19	ТАР	15946124	HSPA4
Hsc70Cb	TER94	+	1.73	3	0.33	ТАР	22036573	HSPA4
Pomp	Prosalpha7	+	3	9	0.97	ТАР	22036573	POMP
Pomp	Prosbeta2R2	+	1	4	0.16	ТАР	22036573	POMP
Pomp	Rpt3	+	3.46	12	0.79	ТАР	22036573	POMP
Pomp	Pros35	+	2.33	9	0.92	ТАР	22036573	POMP
Pomp	Pros29	+	1.63	6	0.94	ТАР	22036573	POMP
Pomp	Pros25	+	2.11	11	0.96	ТАР	22036573	POMP
Pomp	Prosbeta7	+	2.88	12	0.94	ТАР	22036573	POMP
Pomp	Rpt1	+	2.33	9	0.87	ТАР	22036573	POMP
Pomp	Pros26.4	+	3.31	11	0.90	ТАР	22036573	POMP
Pomp	Rpn1	+	3.16	10	0.79	ТАР	22036573	POMP
Pomp	Prosbeta3	+	3.16	10	0.98	ТАР	22036573	POMP
Pomp	Rpt4	+	3.16	10	0.90	ТАР	22036573	POMP
Pomp	Prosbeta1	+	2.30	12	0.96	ТАР	22036573	POMP
Pomp	Prosbeta5	+	2.52	10	0.95	ТАР	22036573	POMP
Pomp	Tbp-1	+	2.88	12	0.73	ТАР	22036573	POMP
Pomp	Rpn2	+	2.30	12	0.82	ТАР	22036573	POMP
Pomp	Pros26	+	3.31	11	0.95	ТАР	22036573	POMP
Pomp	Prosbeta2	+	3.31	11	0.91	ТАР	22036573	POMP
Pomp	CG17331	+	2.52	10	0.95	ТАР	22036573	POMP
Pomp	Prosalpha5	+	3.16	10	0.98	ТАР	22036573	POMP
CG10638	TER94	-	-1.73	3	0.57	ТАР	22036573	AKR1D1
CG10638	Pros35	-	-1.73	3	0.483	ТАР	22036573	AKR1D1
CG15717	Prosalpha7	-	-2	4	-0.17	ТАР	22036573	ALDH16A1
CG15717	Prosbeta3	-	-1.73	3	-0.21	ТАР	22036573	ALDH16A1
CG15717	Prosbeta1	-	-1.73	3	-0.26	ТАР	22036573	ALDH16A1
CG15717	Pros35	-	-1.73	3	-0.07	ТАР	22036573	ALDH16A1
CG15717	Pros25	-	-1	4	-0.19	ТАР	22036573	ALDH16A1
CG15717	Prosbeta7	-	-1.73	3	-0.18	ТАР	22036573	ALDH16A1
CG15717	Prosbeta5	-	-2	4	-0.10	ТАР	22036573	ALDH16A1
CG15717	Pros26	-	-1.73	3	-0.24	ТАР	22036573	ALDH16A1
CG15717	Prosbeta2	-	-1.73	3	-0.12	ТАР	22036573	ALDH16A1
CG32039	TER94	-	-1.5	1	0.62	-	-	SVIP
MRP	Rpt1	-	-2	4	-0.46	ТАР	22036573	ABCC3
MRP	Rpn1	-	-1.73	3	-0.42	TAP	22036573	ABCC3
MRP	TER94	-	-1.73	3	-0.52	TAP	22036573	ABCC3

References

- 1. Flockhart, I.T. et al. FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update. *Nucleic Acids Res* **40**, D715-719 (2012).
- 2. Gilsdorf, M. et al. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. *Nucleic Acids Res* **38**, D448-452 (2010).
- 3. Neumuller, R.A. et al. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. *Cell Stem Cell* **8**, 580-593 (2011).
- 4. Mummery-Widmer, J.L. et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. *Nature* **458**, 987-992 (2009).
- 5. DasGupta, R., Kaykas, A., Moon, R.T. & Perrimon, N. Functional genomic analysis of the Wntwingless signaling pathway. *Science* **308**, 826-833 (2005).
- 6. Bard, F. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. *Nature* **439**, 604-607 (2006).
- 7. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. *Science* **303**, 832-835 (2004).
- 8. Friedman, A.A. et al. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. *Science signaling* **4**, rs10 (2011).
- 9. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. *Nature* **444**, 230-234 (2006).
- 10. Yi, C.H. et al. A genome-wide RNAi screen reveals multiple regulators of caspase activation. *J Cell Biol* **179**, 619-626 (2007).
- 11. Sathyanarayanan, S. et al. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. *Genes Dev* **22**, 1522-1533 (2008).
- 12. Lu, J., Ruhf, M.L., Perrimon, N. & Leder, P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. *Proc Natl Acad Sci U S A* **104**, 9381-9386 (2007).
- 13. Nybakken, K., Vokes, S.A., Lin, T.Y., McMahon, A.P. & Perrimon, N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. *Nat Genet* **37**, 1323-1332 (2005).
- 14. Baeg, G.H., Zhou, R. & Perrimon, N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. *Genes Dev* **19**, 1861-1870 (2005).
- 15. Zhang, S.L. et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. *Proc Natl Acad Sci U S A* **103**, 9357-9362 (2006).
- 16. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. *Science* **312**, 1220-1223 (2006).
- 17. Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M. & Boutros, M. p24 proteins are required for secretion of Wnt ligands. *EMBO Rep* **12**, 1265-1272 (2011).
- 18. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. *Science* **299**, 2039-2045 (2003).
- 19. Kuttenkeuler, D. et al. A large-scale RNAi screen identifies Deaf1 as a regulator of innate immune responses in Drosophila. *J Innate Immun* **2**, 181-194 (2010).
- 20. Kleino, A. et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. *EMBO J* **24**, 3423-3434 (2005).
- 21. Qin, Q.M. et al. RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. *PLoS Pathog* **4**, e1000110 (2008).
- 22. Port, F., Hausmann, G. & Basler, K. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. *EMBO Rep* **12**, 1144-1152 (2011).

- 23. Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M.P. & Boutros, M. Identification of JAK/STAT signalling components by genome-wide RNA interference. *Nature* **436**, 871-875 (2005).
- 24. Foley, E. & O'Farrell, P.H. Functional dissection of an innate immune response by a genome-wide RNAi screen. *PLoS Biol* **2**, E203 (2004).
- 25. Kockel, L. et al. Dynamic switch of negative feedback regulation in Drosophila Akt-TOR signaling. *PLoS Genet* **6**, e1000990 (2010).
- 26. Mourikis, P., Lake, R.J., Firnhaber, C.B. & DeDecker, B.S. Modifiers of notch transcriptional activity identified by genome-wide RNAi. *BMC Dev Biol* **10**, 107 (2010).
- 27. Elwell, C.A., Ceesay, A., Kim, J.H., Kalman, D. & Engel, J.N. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. *PLoS Pathog* **4**, e1000021 (2008).
- 28. Ravi, D. et al. A network of conserved damage survival pathways revealed by a genomic RNAi screen. *PLoS Genet* **5**, e1000527 (2009).
- 29. Pospisilik, J.A. et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. *Cell* **140**, 148-160 (2010).
- 30. Doumanis, J., Wada, K., Kino, Y., Moore, A.W. & Nukina, N. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. *PLoS One* **4**, e7275 (2009).
- 31. Neely, G.G. et al. A genome-wide Drosophila screen for heat nociception identifies alpha2delta3 as an evolutionarily conserved pain gene. *Cell* **143**, 628-638 (2010).
- 32. Saj, A. et al. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. *Dev Cell* **18**, 862-876 (2010).
- 33. Bond, D. & Foley, E. A quantitative RNAi screen for JNK modifiers identifies Pvr as a novel regulator of Drosophila immune signaling. *PLoS Pathog* **5**, e1000655 (2009).
- 34. Cronin, S.J. et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. *Science* **325**, 340-343 (2009).
- 35. Beller, M. et al. COPI complex is a regulator of lipid homeostasis. *PLoS Biol* **6**, e292 (2008).
- 36. Neumuller, R.A. et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. *Science signaling* **6**, ra70 (2013).
- 37. Korcsmaros, T. et al. Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. *Bioinformatics* **26**, 2042-2050 (2010).
- 38. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Res* **40**, D109-114 (2012).
- 39. Vinayagam, A. et al. Protein complex-based analysis framework for high-throughput data sets. *Science signaling* **6**, rs5 (2013).
- 40. Stark, C. et al. The BioGRID Interaction Database: 2011 update. *Nucleic Acids Res* **39**, D698-704 (2011).
- 41. Kerrien, S. et al. The IntAct molecular interaction database in 2012. *Nucleic Acids Res* **40**, D841-846 (2012).
- 42. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. *Nucleic Acids Res* **32**, D449-451 (2004).
- 43. Licata, L. et al. MINT, the molecular interaction database: 2012 update. *Nucleic Acids Res* **40**, D857-861 (2012).
- 44. Murali, T. et al. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. *Nucleic Acids Res* **39**, D736-743 (2011).
- 45. Guruharsha, K.G. et al. A protein complex network of Drosophila melanogaster. *Cell* **147**, 690-703 (2011).

- 46. Boyle, E.I. et al. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. *Bioinformatics* **20**, 3710-3715 (2004).
- 47. Wernicke, S. & Rasche, F. FANMOD: a tool for fast network motif detection. *Bioinformatics* **22**, 1152-1153 (2006).