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A screen for morphological complexity identifies
regulators of switch-like transitions between
discrete cell shapes
Zheng Yin1,2,6, Amine Sadok3,6, Heba Sailem3, Afshan McCarthy3, Xiaofeng Xia1,2, Fuhai Li1,2, Mar Arias Garcia3,
Louise Evans3, Alexis R. Barr3, Norbert Perrimon4, Christopher J. Marshall3, Stephen T. C. Wong1,2,5,7

and Chris Bakal3,7

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted
to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in
culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological
complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather
than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that
decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these
genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.

Morphological plasticity is critical to organism development—as
exemplified by the reversible conversion of embryonic non-migratory
epithelial cells to motile mesenchymal cells required for tissue
positioning and organization1. The size of the shape space a cell has the
potential to explore reflects its morphological plasticity2. Highly plastic
cells explore large regions of shape space when compared with cells
with stable morphologies. In adult organisms, the shape space available
to most differentiated cells is relatively limited, serving to enforce tissue
architecture and function.However, during the pathogenesis of diseases
such as metastatic cancers, cells can re-acquire the ability to explore
shape space and thus find a shape that is suitable for migration and
invasion2–6. At present, there is little understanding of how the size
and topology of cellular shape space is determined by genetic and
environmental factors.
To identify how genes contribute to the size and topology of shape

space we developed high-throughput imaging and computational
methods to describe the morphological complexity of cellular
populations and applied them to data sets generated by systematic
RNA interference (RNAi) screens in Drosophila Kc cells. We first
determined whether cells have discrete shapes or whether shape is
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a continuous variable. Subsequently we identified genes that contribute
to the exploration of shape space in Kc cells, as well as those that regulate
the topology of shape space itself. Finally we isolated a conserved gene
network that regulates contractility and protrusion in Drosophila as
well as mouse and human melanoma cells. This demonstrates that the
analysis of morphological complexity provides new insights into the
signalling networks regulating cell shape.

RESULTS
RNAi screening indicates that Kc cells exist in discrete shapes
We used RNAi screening in Drosophila Kc167 cells (Kc cells) to explore
the contribution of genes to morphological complexity (Fig. 1a–f).
We use the term experimental condition (EC) for cells treated with
double-stranded RNA (dsRNA). Following image processing (see
Methods and Supplementary Note, Fig. S1 and Tables S1–S4), we
scored cells in each EC on the basis of their similarity to reference
shapes7,8. Briefly, we used human observers (Fig. 1d) and online
discovery algorithms8 (Fig. 1e) to identify as many distinct cellular
shapes (reference shapes) as possible in the data set. Most cells in the
data set could be characterized as normal (N) cells, which are rounded
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Figure 1 Automated morphological profiling. (a) Kc167 cells were incubated
with 899 single dsRNAs targeting most Drosophila kinases and phosphatases.
Experiments were performed in triplicate or quadruplicate in 384-well plates.
Following fixation and staining using DAPI, phalloidin and an anti-α-tubulin
antibody, each well was imaged at 16 sites by confocal microscopy. Scale
bars, 20 µm. (b,c) Automated image segmentation and feature extraction
were performed to generate feature information for 2,038,641 cell segments.
Scale bars, 20 µm. (d) SVM-recursive feature elimination was used to reduce
the dimensionality of the data, and SVM-based classifiers were generated
for three initial reference shapes (N, L and R). Individual cell segments
were initially classified by assigning raw QMSs based on the similarity of the
segments to N, L and R shapes. Scale bar, 20 µm. (e) Subsequently, online
phenotype-detection methods8 were implemented to detect the presence of
two other shapes, T and C. (f) All cells were then re-assigned QMSs based on
the similarity of each cell to all five reference shapes, but the comparison to

N cells is done by calculating a penetrance Z -score of mutant shapes before
filtering (see Fig. 2). (g) Sensitivity as determined by cross-validation analysis
to determine whether two exemplar shapes are quantitatively different from
one another using a new SVM classifier. Each test was performed on 200 test
cells from training classes comprised as follows: N, 2,185 cells; L, 2,053
cells, C, 2,041 cells; T, 2,002 cells; R, 2,028 cells. For example, if N is
considered the positive class, and L is the negative class, the N versus L
classifier correctly identifies N cells in 91% of tests (asterisk). (h) Cells are
classified as most similar to a particular single shape. Cells not assigned to
one particular shape are assigned to the rare class. (i) Silhouette index for
different cluster numbers using hierarchical clustering (blue) or Gaussian
mixture models (GMM; red) of principal component data. (j) Number of
cells with a particular morphology (N, L, C, T, R or other) that are part of a
particular cluster (1–5) using hierarchical clustering of principal components.
Work-flow process steps in a–f are labeled in orange.
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cells with smooth borders of cortical actin (Fig. 2a), together with
another 4 reference shapes. We labelled these reference shapes as L, C,
T or R, which correspond to: elongated, bipolar, spindle-shaped cells
(L; Fig. 2b); large cells with smooth edges (C; Fig. 2c); small, partially
polarized teardrop-shaped cells (T; Fig. 2d); and very large flat cells
with ruffled edges (R; Fig. 2e). Five different support vector machine
(SVM)-based classifiers were generated that could distinguish these
morphological classes. We also derived specific and sensitive Gaussian
SVM classifiers that distinguish between pairs of shapes versus simply
one shape from all others (Fig. 1g). Every cell in the data set was then
scored using each classifier to generate a multi-dimensional vector,
or a quantitative morphological signature (QMS) that describes the
similarity of that cell to each reference shape (Fig. 1f). Thus, unlike the
use of absolute measures (for example, area, size), a QMS is a measure
that describes shape relative to other reference shapes. Each cell in the
data set is assigned a QMS, and a mean QMS can be calculated for
any given population.
To gain a sense of whether our classification systems capture most

of the morphological variance present in the data set we investigated
whether most cells in the data set could be considered as similar to
one of the reference shapes. When all cells in the data set are classified
with respect to their similarity to a single phenotypic group, versus
determining their similarity to multiple classes simultaneously, we
observed that most cells could be grouped into the N, L, C, T or R
classes, and that only 2.15% could be classified as other/rare shapes
(Fig. 1h). We confirmed this finding using alternative unsupervised
classification methods such as principal component analysis followed
by hierarchical clustering, or Gaussian mixture modelling to segregate
the data into distinct morphological clusters (Fig. 1i). Each of the 5
main morphological classes is populated predominantly by one of N, L,
C, T or R-type cells (Fig. 1j). Thus, perhaps surprisingly, the number
of different shapes present in the entire data set is low, and is well
described by 5 different shapes.
As a first step towards understanding the role of different genes

in the control of cell shape, we classified the effects of RNAi on the
basis of the population mean of single-cell QMS scores, following
the filtering out of normal cells and consolidation of replicable
phenotypes. Here, the QMS is a 5-dimensional vector that describes
the mean similarity of cells to L, C, T and R shapes, and a PZ score,
which is the penetrance of all non-normal shapes in the population
before filtering (Supplementary Table S5). Gene QMSs were organized
using average linkage hierarchical clustering to describe phenoclusters
(Fig. 3). However, although this analysis reveals how different genes
broadly affect the morphology of different populations, it does not
account for population heterogeneity.

Population of wild-type Kc cells is comprised of 5 shapes
We next sought to leverage single-cell data to determine how genes
contribute to the regulation of morphological complexity. We
prefer the term complexity to heterogeneity as it better describes
the number of shapes that could be considered distinct, versus
the total number of shapes in a population—which may represent
variations on the same shape. For example, if cells in a population
are mostly a single highly variable shape, the heterogeneity of the
population is high but the complexity is low. After accounting for
differential penetrance of different dsRNAs and identifying dsRNAs
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Figure 2 N, L, C, T and R cells. (a–e) Wild-type (a), Pvr - (b), CycA- (c),
rl/ERK - (d) or Rho1-depleted (e) cells were fixed, labelled with DAPI,
phalloidin and anti-α-tubulin antibody, and imaged. Arrows denote cells with
representative shapes. Coloured cells on the right are traces of representative
shapes. Scale bars, 20 µm.
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Figure 3 Hierarchical clustering of QMSs. Average linkage clustering of 284
5-feature QMSs comprising L, C, T and R SVM Z -scores as well as PZ scores.
Included are experimental conditions, following the RNAi-mediated depletion
of 282 genes, RNAi-mediated targeting of lacZ, and a signature for control
wells. Genes are in the same phenocluster when clustered together at a cutoff
distance (an average of uncentred Pearson correlation coefficients) greater
than 0.90. At this threshold, we identified 10 different phenoclusters and
4 QMSs (CkIα, Cdk4, Pp4-19C and Wsck ) that did not cluster with any
other gene. The number of genes that comprise each phenocluster is shown
in shaded boxes. Some genes that are members of each phenocluster are
listed. The largest phenocluster, cluster 5, is composed of 85 ECs that have

QMSs that are not significantly different from wild-type cells, even when RNAi
penetrance is taken into account (Supplementary Fig. S1 and Supplementary
Methods). The mean QMS of 6 ECs in cluster 6 is also essentially wild
type. Cluster 3 is significantly enriched19 in canonical sevenless receptor
tyrosine kinase (RTK) components (P = 6.21× 10−4), and cluster 7 is
significantly enriched for genes involved in phosphatidylinositol signalling
(p =1.19×10−4) and cell size (p =1.07×10−3). A complete list of genes
in each phenocluster is included in Supplementary Table S5. Representative
image fields from particular phenoclusters are shown. Nuclei are labelled
with Hoechst (blue), polymerized actin is labelled with phalloidin (green) and
microtubules are labelled with anti-tubulin antibody (red). Scale bars, 20 µm.
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Figure 4 Morphological complexity is a phenotype that can be altered by
RNAi. (a) Diagram explaining the generation of Q(4) scores. For any given
EC, the distribution of cells in morphological space is compared with the
distribution of all other ECs, all other ECs in a phenocluster (Fig. 3), and
distribution of ECs from all other clusters to generate Q(1), Q(2) and Q(3)
scores, respectively. A Q(4) score is the difference between a Q(2) and Q(1)
score; the Q(3) score describes the uniqueness of the population. (b) The
average similarity scores (y axis) between a single EC and all ECs in the data
set (red), all genes in the same phenocluster (blue), or all ECs in different
phenoclusters (green) are shown. Genes are organized by phenocluster (left
to right) as in Fig. 3. (c) Q(1) similarity scores comparing all ECs to each other.
Similarity scores are normalized to range between 0 and 1. Highly similar
populations are coloured in red, and dissimilar populations are coloured

in blue. Genes are arranged according to their phenocluster membership as
described in Fig. 3 (denoted by the numbers on the graph). (d) We compared
the Q(4) and mean QMSs of different ECs with the scores in wild-type/control
EC (for example, lacZ RNAi) to describe how genetic inhibition can affect
the exploration of cells in the pre-defined shape space. A population can
belong to one of seven different categories depending on its mean QMS score
and Q(4) scores. For 6 different classes we estimated the Gaussian kernel
density for principal component 2 (PC2) and PC3 of populations sampled
from different clusters or ECs that are representative of different classes.
Each plot represents the probabilities for the occurrence of different shapes
and thus describes the morphological space explored by the population. For
each graph the cell numbers are as follows: cluster 5, 247,341; cluster 8,
72,196; cluster 9, 7,358; cluster 14, 4,144; CamKII, 3,008; Dsor1, 3,603.
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with reproducible phenotypes (Supplementary Fig. S2), we calculated
matrices describing the similarity of the space sampled by an EC to
that sampled by all other ECs (Q(1) score; Fig. 4a), as well as to the
space sampled by ECs in the same phenocluster (Q(2) score; Fig. 4a).
From these scores, we generated a Q(4) by subtracting the Q(1) score
from the Q(2) score (Fig. 4a). A Q(4) score describes the complexity of
a population. Populations that sample the same morphological space,
and thus have the same complexity as other populations, have low Q(4)
scores, whereas homogeneous populations with low complexity have
high Q(4) scores (Fig. 4b and Supplementary Table S5). By plotting
the Q(1) of each EC against all others, we observed that ECs from
clusters 5 and 6, or wild-type cells, are very similar to themselves, and
to almost all other ECs in the data set (Fig. 4c). Moreover, control
(mock-treated) and lacZ RNAi ECs have the fourteenth and eighteenth
highest Q(1) scores in the data set, respectively, and ECs from clusters
5 and 6 include 40 of the 50 highest ranking ECs in terms of Q(1)
scores. Only 3.9% of ECs have a Q(1) score significantly different from
the wild type (P < 0.05). These data show that wild-type Kc cells have
limited morphological complexity that is nearly equivalent to that of
the entire data set of RNAi treatments, and are comprised of different
shapes that are well represented by the 5 reference shapes. Given that
the entire data set is well described by 5 shapes (Fig. 1j), this suggests
that gene knockdown most often enriches for shapes that are already
present at low levels in populations of wild-type cells.

RNAi most often decreases the number of shapes present in the
wild-type population
To describe phenotypes on the basis of the morphological complexity
of cellular populations, we classified genes by their Q(4) and mean
QMS (Fig. 3) to generate seven different classes (Fig. 4d). Class (i) is
comprised of ECs with a wild-type mean and wild-type complexity
(unaffected cells, 27.8% of all ECs). Notably, by plotting density
estimations of shape frequency in two principal components, we
observe that the five different subpopulations in wild-type cells seem
to exist as discrete subpopulations (Fig. 4d). Class (ii) consists of ECs
that have an abnormal mean but wild-type complexity (38.3%). In this
class, RNAi has altered the distribution of cells within subpopulations,
but each subpopulation remains represented in the population. For
example, in Par1-, Rok-, Slik-, SAK - or trc-depleted populations there
is an enrichment of elongated shapes, resulting in a mean score that is
different from wild-type cells, but the complexity of this population
is the same as the wild type and the population is also enriched in
other shapes. In class (iii) are ECs with decreased morphological
complexity where one or more subpopulations has been enriched at
significant expense of others (Q(4) Z -score> 1.0), (26.8%). Examples
of these include 14-3-3ζ -, Pp2B-14D-, Pp2A-29B-, Dgk-, hop/JAK -
or PTEN -depleted populations where there is an enrichment of L
elongated cells but a marked decrease in other shapes. Class (iv) is a
small fraction (1.1%) of ECs with an abnormal mean, significantly
decreased heterogeneity and morphologies that are different from
those sampled by wild-type populations. Here new shapes have been
generated, but the overall complexity (number of total shapes) is less
than the wild type. For example, ial/AurB- or sticky/CitronK -depleted
populations are very homogeneous and explore a small region of shape
space not sampled by wild-type cells. Class (v) is a single EC, fwd
RNAi, which has a wild-type mean and decreased complexity. Class

(vi) (3.9% of ECs) have a wild-type mean, but are significantly more
complex than the wild-type cells. Class (vii) (1.4% of ECs) have an
abnormal mean and significantly increased complexity when compared
with wild-type cells. Classes (vi) and (vii) include genes such as Stam,
CamKII and Abl, which are of particular interest as morphological
complexity is increased but these populations are sampling space within
that explored by wild-type cells.
Thus, RNAi does not typically lead to the generation of new shapes,

but rather alters the distribution of pre-existing subpopulations that
exist in wild-type cells. We propose that cellular morphogenesis
of Kc cells is a canalized processes9, where cells can transition
between only a limited number of stable shapes, and changes in the
distribution occur following RNAi because inhibition of different
signalling events prevents the ability of cells to transition from one
shape to another, effectively trapping them in one ormore stable shapes
found in wild-type cells.

Kc cells make switch-like transitions between discrete shapes
We reasoned that cells could transition between stable shapes in one of
two ways. Cells could transition between discrete shapes in a switch-like
manner, where intermediate forms are highly transient and therefore
rarely observed. Alternatively, cells could make continuous transitions
where there are a diverse number of morphologies that appear as
stable intermediates between shapes. To discriminate between these
two possibilities, we calculated a RIFT score (rate of intermediate forms
or transitions) for different ECs. The RIFT score quantifies the extent
of misclassification by clustering that occurs when populations of cells
comprised of 5 shapes from a training pool are mixed in silico with
an equal number of cells from an EC (Fig. 5a). A high RIFT score
indicates the presence of intermediate shapes in the EC, whereas a low
RIFT score suggests that there are very few intermediate shapes in the
EC. Deficiency of some genes results in high RIFT scores for all shape
classes, and thus accumulation of intermediate forms between all shapes
(Fig. 5b,c). In other cases the RIFT score is high only for a particular
class, meaning that there is an accumulation of forms near a particular
shape (Fig. 5b,c). We calculated the maximum RIFT score (Fig. 5d,
blue bars) and the average RIFT score (Fig. 5, orange bars) of different
populations, although there is typically high correlation between these
values (Fig. 5d). For example, we determined the RIFT scores for ten
populations with low complexity (high Q(4) score) and ten, including
wild-type cells, with high complexity (low Q(4) score), and find that
there are few intermediate shapes in wild-type cells. Moreover, RNAi
rarely results in an increase in RIFT scores. Thus, the morphogenesis of
wild-type Kc cells is both discrete and switch-like in nature. However,
RNAi-mediated knockdown of Stam (Fig. 5e) and CamKII leads to
high average RIFT scores (Fig. 5d), and these ECs have many shapes
that can be considered continuous. This suggests that the function of
these genes is essential for switch-likemorphogenesis of Kc cells.

Melanoma cells exhibit discrete, switch-like morphogenesis
Wenext sought to determine whether ourmodel of discrete, switch-like
morphogenesis can be applied to mammalian cells. When cultured
on the artificial substrate of rigid tissue culture plastic, metastatic
melanoma cells, such as human WM266.4 cells, do not explore shape
space in a discrete, switch-likemanner akin to Kc cells, as theirmorphol-
ogy varies continuously around a single spread morphology (Fig. 6a).
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Figure 5 Kc cells exist as discrete subpopulations. (a) Methodology for
generating the RIFT score. A training pool of 500 cells from 5 reference
classes (N, L, C, T and R) is clustered, resulting in 5 different clusters.
Test populations are then added to the set, and the entire population is
reclustered. If the reclustering results in 5 clusters, the test population
is comprised of largely discrete subpopulations and a low RIFT score.
However, if after reclustering cells from the training pool are misclassified
into new clusters, this indicates the test population has shapes that can be
considered intermediate between the reference class, resulting in a high
RIFT score. (b) ECs can have a high maximum RIFT score (for example,
where a high percentage of L cells are assigned into new clusters) and
also a high average RIFT score. (c) Radar-gram of RIFT scores for Stam,

csw/SHP-2, Wsck, CycA and control ECs. For ECs such as Stam, many
cells do not fall into N, L, C, T or R phenoclusters, whereas in csw/SHP-2
populations, many cells of L or T classes are specifically reclassified.
(d) The maximum and average RIFT score were calculated for ECs with
the 10 highest and 10 lowest Q(4) scores, as well as for 10 normal
populations. Error bars represent standard deviation (s.d.) following 10
recalculations (using new populations) of the RIFT score. (e) The top
panels are a top-down view of the density estimates of randomly sampled
cells from all clusters (584,452 cells), or of Stam-deficient cells (1,392
cells). The bottom panel is the same density estimate of Stam-deficient
cells. RIFT scores for all ECs are listed in Supplementary Table S5. PC,
principal component.

We extended these observations by quantifying the morphology of
WM266.4 cells plated on plastic over time (Fig. 6b). However, when
cultured on deformable collagen-I (Col-I) matrices5,10–12 that have a
stiffness comparable to the epidermis, the morphogenesis of WM266.4
cells becomes discrete. OnCol-I,WM266.4 cells assume only a rounded
(similar to N shape) or an elongated form (similar to L shape; Fig. 6c).
Within minutes, WM266.4 cells plated on Col-I make rapid switch-like
conversions between the shapes (Fig. 6d). This reveals that WM266.4
melanoma cells can explore shape space in a manner similar to Kc
cells when plated on substrates that closely resemble their in vivo
environment. Kc cells presumably can assume discrete shapes on
plastic as they are only weakly adherent. We reasoned that the ability of
cells to make switch-like conversions between rounded and elongated
shapes could be due to dynamic regulation of protrusive and contractile

forces. In support of this notion, knockdown in Kc cells of the Rho
kinase Rok (ref. 13), a key regulator of cellular contractility, leads to an
accumulation of elongated L, as well as large, flat and presumably poorly
contractile C and R cells (Fig. 6e); thus, morphological transitions
are inhibited in Rok-depleted cells. To test the role of contractility
in the discrete switch-like morphogenesis of melanoma cells, we
incubated WM266.4 cells plated on Col-I in increasing doses of the
ROCK inhibitor H1152 and tracked their morphology over time.
Inhibition of ROCK led to the accumulation of cells with a collapsed
morphology that differs from both elongated forms and rounded forms
(Fig. 6f) and makes only small continuous variations in shape (Fig. 6g);
switch-like transitions do not occur. Thus, substrate stiffness and
cellular contractility are important factors determining the extent to
which cells explore shape space in a discrete versus continuous fashion.
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Figure 6 Melanoma cells make switch-like transitions between discrete
morphologies on Col-I. (a–d) WM266.4 cells were plated either on plastic
(a,b) or Col-I (c,d). The Gaussian kernel density estimate of single-cell
morphology in two-dimensional principal component (PC) space is shown in
a,c. In b,d, the y axis corresponds to the PC1 scores of single cells. Elongated
cells have high PC1 scores; rounded cells have low PC1 scores and are
shaded in orange. Time is described in the x axes. (e) The Gaussian kernel

density estimate of Rok -deficient Kc cells (1,808 cells). (f,g) WM266.4
cells were plated on Col-I, exposed to increasing doses of ROCK inhibitor
H1152, and morphology was quantified 6h later at both a single time point
(f) or over time (g). We calculated the magnitude of morphology fluctuations
for individual cells by calculating the s.d. in PC1 scores per cell over time.
(a,b) 29,476 cells, (c,d) 21,061 cells, (f,g) 0.1 µM H11552, 36,665 cells;
1.0 µM, 12,605 cells; 5.0 µM, 66,374 cells. Scale bars, 20 µm.

PTEN deficiency promotes bistable populations of rounded
and elongated cells
The ratio of rounded to elongated melanoma cells is highly dependent
on both environment and genetic background. For example, whereas
the ratio of elongated to rounded cells can be as high as 50:50 in the case
of WM266.4 cells on Col-I (Fig. 6b), melanoma cells such as A375M2
are mostly rounded5,11. However, the specific genes that determine
the rounded/elongated ratio are largely unknown. We reasoned that
we could leverage the results of our morphological screen to gain
insight into the factors regulating the conversion between rounded
and elongated shapes of melanoma cells on the basis of two striking
observations: first, the shape of WM266.4 cells, which do not express
PTEN, phenocopies that of PTEN -deficiency in Drosophila (high ratio
of elongated to rounded; Fig. 7a) and second, hop/JAK -deficient Kc
populations are also heavily enriched in elongated cells at the expense
of other shapes, which is consistent with our recent finding that
JAK1 promotes contractility in melanoma cells12. In fact, PTEN and
hop/JAK RNAi results in the seventh and eighth highest L scores

respectively in the entire Kc data set, and both ECs have high Q(4)
scores demonstrating that they explore only limited regions of shape
space when compared with wild-type Kc cells.
To determine whether PTEN status correlates with the ratio of

rounded/elongated shapes in cell populations, we plated 22 melanoma
cell lines (10 PTENnull and 12 PTENwt) on Col-I gel and assessed
the ratio of rounded/elongated cells. PTEN loss strongly correlates
with an increase in the proportion of elongated to rounded cells
(Fig. 7b and Supplementary Table S6). Furthermore, depletion of
PTEN expression in PTEN wild-type mouse 4599.1 or human A375p
melanoma cells (Fig. 7c and Supplementary Fig. S3a,b) by independent
short hairpin shRNAs (shRNAs) increases the number of elongated cells
and increases phosphorylated Akt levels (Fig. 7d and Supplementary
Fig. S3a,b).We confirmed the effect of PTEN shRNA using quantitative
readouts of morphology (Fig. 7e), and show that PTEN depletion
increases the number of elongated cells but does not generate any
other shapes. Importantly, re-expression of PTEN in the WM266.4
PTEN -null melanoma cells increases the number of rounded cells at
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Figure 7 Loss of PTEN alters the exploration of shape space. (a) Density
estimation of PTEN -deficient Kc cells (1,831 cells). The upper right
panel is a side view of the density estimate shown and the lower
right panel shows Kc cells stained with DAPI (blue), phalloidin (green)
and anti-tubulin antibody (red) following PTEN RNAi. PC, principal
component. Scale bar, 20 µm. (b) Percentage of elongated cells
on the top of thick Col-I (mean± s.e.m.); 250 cells over 5 fields
of view per cell line; n = 12 PTENwt and 10 PTENnull cell lines
(Supplementary Table S6); Student’s t -test was used to generate the
P value. (c) Images of 4599.1 cells on thick Col-I; PTEN was stably
depleted by two different shRNAs (J04 and J05). NT is a non-targeting
shRNA. 690.cl2 cells are shown for comparison. Scale bars, 50 µm.
(d) Representative immunoblot of pSer473 AKT, PTEN and tot-AKT in
NT- and PTEN -shRNA-expressing 4599.1 cells. (e) Density estimation of
4599.1 cells treated with Scr (scrambled) siRNA (upper panel; 1,326
cells) or PTEN RNAi (lower panel; 305 cells) cultured on thick Col-I. The
right panels show images of live cells; arrows denote elongated cells. Scale
bars, 20 µm. (f) Representative images of WM266.4 cells transfected

with Empty–EGFP or PTEN–EGFP on the top of thick Col-I. Scale bars,
50 µm. (g) Proportion of elongation/rounded cells following expression of
Empty–EGFP - or PTEN–EGFP -expressing cells (mean± s.d.); 200 cells
per experiment, n=3 experiments; Student’s t -test was used to generate
the P value. (h) Levels of PTEN, pAKT, total (Tot) AKT and ROCK2 (loading
control) in Empty–EGFP - and PTEN–EGFP - transfected WM266.4 cells.
(i) Representative images of 690cl2 and 4599.1 tumour sections. Scale
bars, 20 µm. (j) The number of elongated cells in the body of either 4599.1
or 690cl2 tumours is expressed as a percentage of the total number of
cells counted per tumour (mean± s.e.m.); 200 cells per field assessed
in 5 fields of view per tumour; n = 4 4599.1 and 4 690cl2 tumours;
statistical analysis was done using Student’s t -test. (k) Representative
images of tumour sections derived from NT- or PTEN -shRNA-expressing
4599.1 cells. Scale bars, 100 µm. (l) Percentage of elongated cells in the
body of the tumour following control (NT) or PTEN RNAi. (Mean± s.e.m.);
200 cells per field assessed in 5 fields of view over n =4 NT RNAi and
4 PTEN RNAi tumours. Uncropped images of blots/gels are shown in
Supplementary Fig. S5.
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Figure 8 A conserved set of genes promotes rounding in Drosophila, mouse
and human cells. (a) Mouse 4599.1 (upper panels) and human A375p (lower
panels) metastatic melanoma cells plated on Col-I following RNAi-mediated
gene knockdown of IRAK1, SLK and PLK1. NT is non-targeting RNAi. Scale
bars, 50 µm. (b) Percentage of elongated cells following knockdown of 15
mouse genes in 4599.1 cells plated on Col-I (mean± s.e.m.). (c) Percentage
of elongated cells following knockdown of 15 human genes in A375p cells
plated on Col-I (mean± s.e.m.). In b,c, 250 cells over n = 3 experiments.
Student’s t -test was used to generate the P values. The asterisks denote the
level of significance: ∗P < 0.05, ∗∗P < 0.001, ∗∗∗P < 0.0001. (d) Network
analysis. We calculated the proximity of different proteins identified in our

screen to either pro-elongation proteins or pro-rounding proteins in the
protein–protein interaction space. The length of the arrow is scaled to a
Z -score that describes the significance of this proximity compared with
random proteins, where longer arrows are less significant and thus further
away in the protein–protein interaction space. As inhibition of all proteins
here results in elongated shapes, we could classify different proteins as
negative regulators of elongation or positive regulators of rounding. Proteins
in the pale orange rectangle are not significantly close to either group. Green
circles indicate that gene depletion increases the percentage of elongation
in mouse and human cells; the yellow circles indicate that gene depletion
increases the percentage of elongation in mouse cells.
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the expense of elongated cells (Fig. 7f–h). To determine whether PTEN
regulates the exploration of shape space in vivo we used orthotopic
implantation of melanoma cells from 4599.1 cells (PTENwt), 4599.1
cell populations stably expressing two different PTEN shRNAs or
690cl2 (PTENnull) into the dermis of NOD SCID mice and assessed
the shape in haematoxylin and eosin-stained sections5,14. Tumour
cells arising from injection of 4599.1 cells are predominantly rounded
(Fig. 6i,j) whereas tumour cells arising from injection of 690cl2 cells
(Fig. 7i,j), or 4599.1 cells in which PTEN had been knocked down, are
markedly elongated (Fig. 7k,l and Supplementary Fig. S4). Thus, PTEN
loss induces elongation cells in tissue culture and in vivo.

A conserved class of genes that promote cell rounding
Given that depletion of PTEN and JAK results in bistable populations
of elongated and rounded cells in Drosophila, mouse and human cells,
we sought to determine whether other genes identified in theDrosophila
screen are conserved regulators of morphogenesis. We selected genes
whose depletion in Drosophila cells results in a significant increase
in the number of elongated cells, or the magnitude of their L scores
(Supplementary Table S7). Genes were further prioritized if their
inhibition resulted in low complexity (high Q(4) score), and thus
were enriched in L cells at the expense of other shapes. For example,
whereas PLK1- and 14-3-3ζ -depleted Drosophila cell populations
are comprised almost exclusively of rounded and elongated shapes,
Slik-depleted populations have a high (L) score, but are also enriched
in other subpopulations. We tested only genes where we could identify
human homologues; in some cases this required targeting of multiple
genes (for example,MAST1,MAST2 andMAST3 are homologues of
Drosophila CG6498; Supplementary Table S7). Using short interfering
RNA (siRNA) pools (Supplementary Tables S8 and S9) we depleted
15 different homologues of 11 different Drosophila genes in 4599.1
mouse and A375p human melanoma cells. When cultured in starving
conditions on a thick Col-I matrix, both 4599.1 and A375p convert
to elongated cells at a low frequency; we scored populations on
the basis of whether siRNA knockdown increases the frequency of
elongation (Fig. 8a). RNAi-mediated knockdown of 12/15 genes in
mouse (Fig. 8b) and 7/15 genes human cells results in significant
increases in elongation that phenocopy their depletion in Drosophila
(Supplementary Table S7). For example, depletion of mouse and
human IRAK1, PLK1, PTEN, ERK1 and ERK2 led to marked increases
in the numbers of elongated cells (Fig. 8b). That 10/11 Drosophila
genes whose depletion results in a high L score can be validated as
regulators of cell rounding in at least one mammalian metatstatic
melanoma tumour line, in addition to PTEN and JAK, highlights
the ability of our RNAi screen to identify genes that have relevance
to disease progression.

Classifying genes as protrusion antagonists or contractility
agonists
Towards gaining systems-level mechanistic insights into how different
validated genes identified in our screen regulate cell shape, we
performed a network analysis to determine the proximity of
different proteins in network space to regulators of protrusiveness
or contractility. Proteins previously implicated in controlling cell shape
were classified into either pro-elongation or pro-contractility groups15.
We then calculated the average number of edges that separated

proteins identified in our screen from proteins in either previously
assigned group in protein–protein interaction networks, and judged
the significance of this distance compared with that between other
random proteins. Proteins such as JAK1 and IRAK1 are significantly
closer in protein–protein interaction space to the pro-contractility
group, whereas PTEN and 14−3−3ζ are closer to the pro-elongation
group (Fig. 8d). Given that depletion of all these genes results in
similar elongated shapes, we conclude that JAK1 and IRAK1 promote
rounding, but 14− 3− 3ζ and PTEN negatively inhibit protrusion.
This unbiased network is consistent with our previous observation that
JAK1 upregulates contractility by activation of the STAT3 transcription
factor12, and that PTEN is a negative regulator of PI(3)K that acts
to promote protrusion in multiple other cell types16. Interestingly,
proteins such as ERK1/2 have not been previously associated with an
upregulation of contractility. Thus, this analysis provides hypotheses
for other poorly characterized genes.

DISCUSSION
By implementing methods to quantify mean morphology, complexity
and presence of intermediate forms in cell populations in an RNAi
screen of Drosophila Kc cells, we propose that cells can explore shape
space in a discrete, switch-likemanner. Using live-cell imagingmethods
in combination with morphological quantification, we demonstrate
that this type ofmorphogenesis is not limited toDrosophila haemocytes,
and that metastatic melanoma cells explore shape space in a similar
fashion when plated on substrates that mimic their in vivo environment.
We propose that many cell types will also exhibit discrete switch-like
morphogenesis in vivo, and that it has been the long-standing use
of rigid tissue culture plastic that has obscured this aspect of cell
shape control. Although the model that cells can be constrained to
specific regions of shape space is potentially counter-intuitive given
the highly plastic nature of cell shape and the ability of cells to adopt
radically diverse shapes, discrete morphogenesis or morphological
canalization of single cells17 is consistent with the idea that signalling
networks are dynamic systems that can exist in a limited number of
stable states, or attractors18.
That systematic gene inhibition by RNAi can alter shape space

and/or alter themode ofmorphogenesis from switch-like to continuous
(for example, Stam RNAi), suggests that signalling networks have
evolved to couple the topology of their shape space, and how they
explore it, to environmental conditions. Metastatic cancer cells may
have re-engineered regulatory networks that uncouple the control
of morphogenesis from environmental cues, which would otherwise
dictate the number of shapes they can assume and how they convert
between these shapes. In the case of PTEN, it is tempting to speculate
that loss of PTEN may promote the adoption of a bistable state
where rounded and elongated forms are present in high numbers. By
increasing the frequency of rounded and elongated cells this would
provide metastatic cells with a survival advantage that is otherwise not
gained by adopting only a single shape, or being highly plastic. �

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS
Cell culture, plasmids and RNAi transfection. A375p and A375M2 cells were
from R. Hynes (Howard Hughes Medical Institute, Massachusetts Institute of Tech-
nology, USA).WM266.4, LU1205,WM1361 andWM1366 cells were fromR.Marais
(Paterson Institute, Manchester, UK), SKMEL24 cells were from ATCC, and
WM239 cells were fromW. Cruz and R. Kerbel (Sunnybrook Health Science Centre,
Toronto, Canada). 690cl2, 7491cl1, 690cl5, 690cl6, 4434cl2, 5537, 1840cl5, 5021cl6,
2225, 5017, A061 and 4599 cells were generated by N. Dhomen and R. Marais (Pa-
terson Institute, Manchester, USA) either from tumours arising in the Braf V600E
mouse model20 or from tumours arising from the BrafV600E PTEN-null mouse
melanoma tumour model21. We have generated the AM997-2 and AM993-1 lines
from the BRAFV600E/PTENnull mouse melanoma tumour model. All of the cells
were maintained in DMEM containing 10% fetal calf serum. Human GFP–PTEN
was from Addgene (Plasmid #13039). Plasmid transfection was performed with
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. The
On-TARGETplus siRNAs against human PTEN and the On-TARGETplus set of
4 siRNAs against mouse PTEN were from Dharmacon (Supplementary Table
S8). For other siRNA experiments targeting genes other than PTEN when used
On-TARGETplus pools (Dharmacon). Transfection was performed with RNAimax
Lipofectamine (Invitrogen) according to the manufacturer’s protocol.

Drosophila Kc167 cells were cultured in Schneider’s insect media (Invitrogen),
10% fetal bovine serum (Invitrogen) and penicillin/streptomycin (Gibco). All
dsRNA experiments were performed using the bathing method as described at
www.flyrnai.org, and cells were fixed following five days of RNAi.

PTEN stable knockdown using shRNA. A set of four pGIPZ-mouse PTEN
shRNA clones (J02, J03, J04 and J05) and a pGIPZ-non-silencing shRNA were from
Open Biosystems. Lentiviral DNA was generated according to the manufacturer’s
instructions; 4599.1 (2×105 cells) mouse melanoma cells were infected with three
PTEN shRNA clones and the non-silencing shRNA control for 24 h; cells were then
cultured in 2 µgml−1 puromycin for 2 days to enrich for the transduced cells.

Verification of mRNA depletion. To verify messenger RNA depletion in
mouse and human melanoma cells, total cellular RNA was isolated from RNAi
or non-targeting sequence-transfected cells using RNAeasy Mini kit (Qiagen)
according to the manufacturer’s instructions. Quantitative real-time PCR (qRT-
PCR) amplifications were performed using the Brilliant II SYBR Green qRT-PCR
Master Mix kit (Agilent). PCR was performed in an Applied Biosystems 7900
HT Fast Real-Time PCR cycler. Fluorescence data were analysed using Applied
Biosystems SDS software. The percentage of mRNA depletion was established as
100− (the ratio of the quantity of mRNA in the RNAi condition normalized
to B2microglobulin and the quantity of mRNA in the non-targeting condition
normalized to B2microglobulin×100).

Cell culture on thick layer of Col-I and time-lapse phase-contrast
microscopy. Fibrillar bovine dermal Col-I was prepared at a 1.7mgml−1

dilution in DMEM according to the manufacturer’s protocol (PureCol, Advanced
Biomatrix), and 50 µl was placed in wells of 96-well plates, 300 µl was placed in
wells of 24-well plates and 2ml was placed in wells of 6-well plates. Cells were
seeded on top of Col-I in medium containing 10% serum and allowed to adhere
for 2–3 h, and medium was changed to 0% serum for 5–16 h then cells were imaged.
PTEN -expressing WM266.4 cells were imaged after 4 h of serum starvation. A cell
was considered elongated when its longest dimension was twice the shortest and
when it showed at least one protrusion5,12. For RNAi experiments on Col-I, 48 h
after transfection, cells were plated on thick Col-I inmedium containing 10% serum
and allowed to adhere for 2–3 h, and medium was changed to 0% serum for 16 h
then cells were either imaged or lysed. WM266.4 cells were treated with the ROCK
inhibitor H1152 after being transferred to Col-I.

Immunofluorescence microscopy. Following five days of incubation with
individual dsRNAs, cells were fixed at room temperature in 4%UltraPure EM grade
paraformaldehyde (Polysciences) in phosphate-buffered saline (PBS; Gibco) for 15
min. Cells were washed three times in PBS and then permeabilized in 0.1% Triton X-
100/PBS solution for 5min. Following three washes in PBS, cells were blocked for 1 h
in 0.5% bovine serum albumin (BSA) (Sigma)/0.02% glycine/PBS solution at room

temperature. Incubation with mouse anti-bovine-α-tubulin (A11126, Molecular
Probes) diluted 1:1,000 was performed overnight in 20 µl 0.5%BSA/0.02%
glycine/PBS at 4 ◦C. Cells were washed three times in PBS and then incubated
with a 1:400 dilution of OregonGreen phalloidin (O7466, Molecular Probes) and
a 1:500 dilution of AlexaFluor 647-labelled F(ab’)2 fragment of goat anti-mouse
IgG (A21237, Molecular Probes) in 20 µl of 0.5%BSA/0.02% glycine/PBS for 1 h at
room temperature. Cells were washed once in PBS, incubated in 1:500 dilution of
DAPI (4’,6-diamidino-2-phenylindole, dihydrochloride, Molecular Probes; D1306,
Molecular Probes)/PBS solution for 5min and then washed one final time in PBS.
For anti-ERK and anti-AKT staining of Drosophila cells, the staining procedure was
identical except that the primary was either a 1:200 dilution of anti-ERK (4695, Cell
Signaling Technology) or anti-Akt (4691, Cell Signaling Technology) antibody and
the secondary was a 1:500 dilution of AlexaFluor 647-labelled F(ab’)2 fragment of
goat anti-mouse IgG (A21246, Molecular Probes).

Imaging. Imaging of Drosophila Kc167 was performed on the Opera QEHS
(PerkinElmer) using a ×60 water-immersion objective. In addition to cells treated
with different dsRNAs targeting kinases and phosphatases, we imaged 1,019
control wells with cells that had been either mock-transfected or transfected with
dsRNAs targeting lacZ. Sixteen fields for each dsRNA were acquired in triplicate
or quadruplicate. Live-cell imaging experiments of WM266.4 cells±H1152, or
4599 cells ± PTEN shRNA were also performed on the Opera QEHS using a
×20 air objective. For live-cell experiments, melanoma cells were pre-labelled
with CellTracker Orange CMRA (C34551, Molecular Probes) where the final
concentration was 5 µM.

Immunoblotting. Whole-cell extracts from cells on thick Col-I gel were collected
in Laemmli sample buffer and sonicated for 15 s before centrifugation. Lysates
were fractionated by SDS–PAGE and transferred to nitrocellulose filters. Antibodies
were as follows: rabbit monoclonal anti-PTEN (138G6), rabbit monoclonal anti-
phospho-AKT (Ser 473; D9E), mouse monoclonal anti-AKT (pan) (40D4); all from
Cell Signalling Technology. All primary antibodies were used at a dilution of 1:500.
Secondary antibodies were ECL sheep anti-mouse IgG, horseradish peroxidase
(NA931V, GE), or ECL donkey anti-rabbit IgG horseradish peroxidase (GE) and
were used at a final dilution of 1:10,000. Detection was performed with the ECL Plus
System (NA934V, GE Healthcare).

Xenografts. All animal procedures were approved by the Animal Ethics Com-
mittees of the Institute of Cancer Research in accordance with National Home
Office regulations under the Animals (Scientific Procedures) Act 1986. 690.cl2 cells,
4599 cells and 4599 cells infected with PTEN shRNA (clone J04 and clone J05)
or the non-targeting shRNA were injected intra-dermally into the lateral flanks of
6–8-week-old female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Tumours
were allowed to develop for a period of 24 days, after which the animals were
euthanized, and tumours were excised, fixed in 4% buffered formalin overnight and
embedded in paraffin. Sections (3 µm) were cut and stained with haematoxylin and
eosin to enable analysis of the tumour samples. Cell shape was assessed in the body
of the tumour on the haematoxylin and eosin-stained tumour samples by counting
the number of round or elongated cells in 5 fields of view per tumour sample;
a minimum of 200 cells were counted per field of view and for each genotype 4
individual tumours were assessed.

RNAi sequences. Sequences for all mouse and human RNAi reagents are listed
in Supplementary Table S8. All Drosophila RNAi sequences are available at
www.flybase.org.

RNAi screen data and code availability. Drosophila RNAi screening data has
been deposited at PubChem (DRSC-P74), and is also available at flybase.org. All
code is available at www.cbi-tmhs.org/GCellIQ/NCB.

20. Dankort, D. et al. Braf(V600E) cooperates with Pten loss to induce metastatic
melanoma. Nat. Genet. 41, 544–552 (2009).

21. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4,
44–57 (2009).

NATURE CELL BIOLOGY

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

www.flyrnai.org
www.flybase.org
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=652248
flybase.org
www.cbi-tmhs.org/GCellIQ/NCB


S U P P L E M E N TA RY  I N F O R M AT I O N

WWW.NATURE.COM/NATURECELLBIOLOGY 1

DOI: 10.1038/ncb2764

Figure S1 Yin

Figure S1 Workflow for image analysis of RNAi screening data. Nuclei were first segmented from the DAPI channel, and these segments were later integrated 
with a “cell body image” combined from the α-tubulin and F-actin channels. Scale bars, 20 mm.
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Figure S2 Accounting for differential penetrance and diverse shapes in 
RNAi replicates. (a) Representative image of cells treated with sti/Citron 
(DRSC09739) or Pvr (DRSC03080) dsRNAs. Scale bars, 20 mm. (b) The 
percentage of normal cells that exists in each population following treatment 
with a single dsRNA (x-axis) is plotted against the number of cells that were 
initially analysed (y-axis). ECs with >75% are considered normal. (c) Cells 
treated with thread/DIAP1 RNAi (DRSC11404), show a 96.7% reduction in 
viability (n=4 experiments). Scale bars, 20 mm. (d) Representative images 

of mock-treated cells or cells treated with rl/ERK (DRSC07833) and stained 
with anti-ERK antibody (green) and DAPI (red). Scale bars, 20 mm. (e) Mean 
ERK intensity (normalized to DAPI intensity) from 195 individual cells 
randomly selected from mock-treated populations or populations treated with 
two different dsRNAs targetting rl/ERK. (f) Mean AKT intensity (normalized 
to DAPI intensity) from 170 individual cells that were randomly selected 
from mock-treated populations or populations treated with three different 
dsRNAs targetting Akt.
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Figure S3 Yin

Figure S3 Repeatability analysis. (a) Example of the effects of normal cell 
filtering on Pp2-14D deficient cells. Whereas Pp2-14D dsRNA is 37% 
penetrant pre-filtering, there are almost no normal cells in the cell population 
post-filtering. (b) The upper panels show the similarity of the 4-dimensional 
QMSs (comparison to L, C, T, R shapes) generated by 3 different dsRNAs 
targeting the same gene. Line colour indicates dsRNAs targeting the 
same gene. Each point represents the mean normalised Z-score of the cell 
population (y-axis) describing the similarity to 4 reference shapes (x-axis). 
The left upper panel shows cases where dsRNAs give dissimilar QMSs, 
whereas the right upper panel shows cases where dsRNAs give similar QMSs. 
The lower panels show the similarity of the 4-dimensional QMSs generated by 
different 4 dsRNAs targeting the same gene. The left lower panel shows cases 

where dsRNAs give dissimilar QMSs, whereas the right lower panel shows 
cases where dsRNAs give similar QMSs. (c) The y-axis describes the number 
of replicable dsRNAs (blue) or non-replicable dsRNAs (red) distributed on the 
basis of the number of dsRNAs used to target an individual gene in the screen 
(x-axis). (d) Similarity matrix for dsRNAs targeting 4 genes from Clusters 1 
and 2. The colour of each square represents the repeatability of each dsRNA 
compared with all others in the matrix. A colour towards the red end of the 
visible spectrum indicates increasing levels of repeatability. Squares below 
the diagonal depict repeatability analyses performed prior to normal cell 
filtering. Squares above the diagonal are analyses performed after normal cell 
filtering. White boxes indicate cases where normal cell filtering decreases the 
repeatability, meaning that the remaining shapes are dissimilar.  
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Figure S4 Yin
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Figure S4 PTEN depletion by RNAi leads to increased numbers of elongated 
cells. 4599.1 melanoma cells (a) and A375p melanoma cells (b) were 
transfected with non-targetting (NT) or PTEN RNAi(s) and seeded on a thick 
layer of Col-I. After 5-16 hrs of serum starvation, cells were photographed 
under phase contrast. Scale bars, 50 mm. Histograms show quantification 

of the proportion of elongated cells  (Mean±S.D.) in 4599.1 melanoma cells 
(a) and A375p melanoma cells (b) upon PTEN knockdown; 300 cells per 
n=3 experiments; Student’s t-test was used to generate p-value. Immuno-
blots show the level PTEN and total (Tot) AKT in NT- and PTEN RNAi(s)-
transfected 4599.1 (upper panel) and A375p (lower panel).
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a

b

Figure S5 High magnification images of tumour sections following PTEN RNAi. Representative images of low magnification tumour sections derived from 
either non-targetting (NT), or PTEN shRNAs-expressing 4599.1 melanoma cells. Scale bars, 100 mm.

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 



S U P P L E M E N TA RY  I N F O R M AT I O N

6  WWW.NATURE.COM/NATURECELLBIOLOGY

IR
AK1

MARK2
SLK
STK10PLK

MAPK1

MAPK3

YWHAZ
IR

AK1

MARK2
SLK
STK10PLK

MAPK1

MAPK3

YWHAZ
0

20

40

60

80

100
Human (A375p)
Mouse (4599)

%
 m

R
N

A 
de

pl
et

io
n

co-transfected

Figure S6 Yin

Figure S6 Levels of mRNA following siRNA-mediated knockdown in mouse and human melanoma cells. 
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Figure S7 Uncropped Western blots.
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Supplementary Table Legends

Table S1 Summary of whole-cell geometry features. Each one of 11 whole-cell geometry features is defined by a feature ID among the 211 morphology 
features. A brief description and the data source from where the specific feature is extracted.

Table S2 Summary of Haralick texture features extracted from the spatial-dependence matrix of each cell segment. The 14 Haralick features are divided into 
three groups, and the feature IDs among the 211 morphology features, as well as the feature names as defined in the original reference, are listed.

Table S3 Summary of regional geometric features. The 54 regional geometric features are divided into two groups, namely length ratios and area ratios. For 
each group, the feature IDs among the 211 morphology features are listed; a brief description for feature extraction are supplied; and an simple illustration 
for feature extraction process is shown.

Table S4 Summary of the four groups within the initial population of each GA run. The 200 individuals in each initial populations for a GA run is divided into 
four groups. Each group is defined based on the results of the previous SVM-RFE process, and the relationships between individuals in each group and the 
SVM-RFE results are defined. 

Table S5 Quantitative Morphological Signature (QMS), Q(4), max RIFT, and mean RIFT scores for 287 ECs. In the first sheet we describe the number of 
repeatable cells that comprise each EC (column C), the number of cells from individual populations targetted by individual amplicons that contribute to total 
cell number. Each ECs QMS is comprised of L, T, C, and R scores and a PZ score. Cluster number is determined by hierarchical clustering (Fig. 3). In the 
second sheet the raw amplicon data for all tested amplicons is listed.

Table S6 Morphological comparison of PTEN wild-type and PTEN-deficient cells. Detail of data that is summarised in Fig. 7b. 

Table S7 Drosophila genes chose for validation in mouse and human melanoma cells.  

Table S8 Sequences for siRNAs and shRNAs used in mouse and human knockdown experiments.
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1. Image processing and cell morphology quantification 
We developed G-CELLIQ (Genomic CELLular Imaging Quantitator), an integrated workflow for 

processing large volumes of digital images generated from high-throughput/genome-scale High-Content 

Screens (HCS). G-CELLIQ is freely available for academic use [1]. Our software performs both image 

segmentation and feature extraction as follows: 

1.1 Image Segmentation 

A three-stage cell segmentation method is used, consisting of nuclear segmentation, cell body 

segmentation, and over-segmentation correction [2-5], as shown in Supplementary Fig. S1.  

Nuclear segmentation: There are three steps in this stage: binarization, nuclei detection, and seeded-

watershed based nuclei segmentation [5, 6]. The binarization step features adaptive thresholding 

technology: a data-driven background correction algorithm is first used to estimate the background with 

cubic B-spline [7, 8]; each pixel is then classified as belonging to a nucleus or the background based on 

the difference between its intensity and the estimated background intensity. Because binarization usually 

fails to segment clustered nuclei [9], we applied further processing steps to binarization results to detect 

nuclei. First a combined image is obtained as: 

���� � ���� 	 0.8  ����; 

����: the original image with intensity information;  
����: the distance image obtained by applying the distance transform on the binary image [10].  

���� is then filtered with a Gaussian filter (with standard deviation ). In the filtered image, the 

noise is suppressed and the local maxima tend to correspond to the cell centers. Nuclei detection is then 

carried out in the gradient vector field (GVF) to further eliminate the possible noisy local maxima[2, 11]; 

here, the redundant stains in the nuclei channel are removed by the non-maxima suppression operation. 

Finally, given the nuclei centers defined from the combined image, marker-controlled seeded-

watershed methods are used to delineate the nuclei shapes. 

Cell body segmentation: Cell body quantification needs information from both F-actin and α-tubulin 

channels. The signal from these two channels are combined as � � �F������ 	 ���������� . Adaptive 

thresholding methods [7, 8] are used to separate the cell bodies from the background. After thresholding, 

the nuclear segmentation results are planted onto the binary cell body image as the seed information, and 

the seeded-watershed method [2] uses this seed information to delineate the cell bodies. This strategy 

tackles the challenging cases where multiple cell bodies are touching each other. 

Over-segmentation correction: Few cells are under-segmented due to the involvement of nuclei 

information as seed for cell body segmentations. Conversely, an over-segmentation problem arises when 

2σ =
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there are multiple nuclear regions within cells (e.g. following failed cytokinesis). We implemented a 

threshold based method to reduce the over-segmentation. Each cell segment is assigned a neighborhood 

cell segment with which it shares the longest common boundary. Then a rectangular region is defined 

across the common boundary of the two touching segmented patches, and the intensity variation within 

the rectangle is calculated. The two patches are merged if intensity variation within the rectangle is 

smaller than a given threshold.  

Image quality control: The following procedure is implemented to select high quality cell images:  

1) Before nuclei segmentation, the histogram and the calculated threshold for binarization for each 

image are compared to those from manually validated good quality images to exclude extremely 

dark or bright images.  

2) Images with less than 10 candidate nuclei are discarded. 

3) Cells that touch the image boundary are discarded. 

1.2 Feature Extraction 

To quantify the geometric and texture properties of each segmented cell, 211 morphology 

features were extracted [3]. The selected features include a total of 85 wavelet features (70 features from 

Gabor wavelet transformation [12] and 15 features from 3-level CDF97 wavelet transformation [13]), 11 

whole-cell geometric features extracted from the whole cell body [3], 47 Zernike moments features with 

a selected order of 12 [14], 14 Haralick texture features [15], and a total of 54 regional geometric 

features extracted from divided parts of cell segments (36 features of ratio length of the central axis 

projection and 18 features of area distribution over equal sectors) [3]. All features are extracted from 

images generated by combining the three channels.  

Wavelet features (feature No. 1~85): Two important types of discrete wavelet transformation, the 

Gabor wavelet [12] and the Cohen–Daubechies–Feauveau wavelet (CDF9/7) [13], were applied to 

extract cellular texture properties. We extracted the mean and standard deviation of Gabor texture 

features, as defined in [16], with 6 scales and 4 orientations. Altogether, 70 features were obtained and 

numbered 1~70 in the resulting feature set. Furthermore, 3-level CDF97 wavelet transformation [13] 

was performed to extract additional texture signatures. In each level, the minimum, maximum, mean, 

median of maximum distribution, and standard derivation were calculated for each transformed image. 

In total, we obtained 15 CDF97 wavelet features from each cell segment, and included them as feature 

No. 71~85. 
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Geometry-I: Whole-Cell Geometry features (feature No. 86~96):::: The 3-channel images for each cell 

segment were first combined into a gray level image, then 11 geometry features were extracted using the 

regionprops function in image processing toolbox of Matlab
TM

, as defined in Supplementary Table S1.  

Zernike moments features (feature No. 97~143): Based on [14], for each cell, Zernike moments of 

order 12 were obtained within a unit circle centered at the cell mass center. Each order generated 4 

features, and with the first output in the lowest order excluded, 47 moments features in total were 

obtained. 

Haralick texture features (feature No. 144~157): As a traditional texture signature, the Haralick Co-

occurrence features, with a total of 14 attributes listed in Supplementary Table S2, were extracted from 

the gray-level spatial-dependence matrices for each cell segment [15].  

Geometry II: Regional geometry features: Two groups of regional geometry features, “length ratios 

of the central axis projection” and “the area ratio over equal sectors”, were extracted after further 

dividing each cell segment, as summarized in Supplementary Table S3[3]. 

We define the cell centroid (mx, my) as the first order moments of the binary image f(x,y) for each 

cell segment. A series of central radial axis are then defined as the line ��. The central projection along 

�� is quantified by the length of the cell boundary contained by two neighboring central axes. The ratio 

length of the central projection ��  is defined as  �� � !" # $%�&�� � where ' � # $%�&�()*+, -,++ �  is 

the perimeter of the cell, and 36 ratio length feature sets are evenly sampled around the cell.  

The entire cellular region is partitioned into 18 sectors centered at the cellular centroid with even 

radius angles; the ratio area is defined as the ratio between the area of the fan bin ./ to the area of entire 

cell segment: �01 � # 2%3,5&�3�5%6,7&891# 2%3,5&�3�5  .  The two shape descriptors are not invariant upon rotation of cell 

segments, and we sorted the calculated ratio length and ratio area in descending order to partially 

address this issue. 

2. Phenotype modeling and cell classification 

2.1 Feature selection using SVM-RFE and GA-SVM 

To discriminate between different phenotypes (as judged by an expert), we need to identify a subset of 

relevant features to these phenotypes from our 211 morphological phenotypes. Initially, SVM-RFE 

(SVM-Recursive Feature Elimination) with linear kernel [17, 18] and cross validation was used to select 

the top 20 informative features. However, it has long been argued that such "greedy combination" of 

good individual features may not be the best option, and in most cases SVM-RFE tends to over-estimate 
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the optimal feature number. Thus, we performed a secondary feature selection using Genetic Algorithm 

with SVM (GA-SVM) [19, 20]. Twenty initial populations, each having 200 individual features, were 

created. Each initial population favors one of the top 20 candidate features from SVM-RFE, and each 

population was divided into four groups, as detailed in Supplementary Table S4. GA optimizations were 

run 20 times and selected the subset giving the lowest value of target function, which is the mean error 

rate through 100 times 10-fold cross validations [17, 18] on the training dataset for each phenotype. In 

both SVM-RFE and GA-SVM stages we used SVMs with linear kernel [21-23] to assess the criteria for 

feature elimination and the fitness function for GA, respectively. SVMs were implemented using the 

SVMTrain and SVMclassify functions of Matlab
TM

.  

The implementation of GA-SVM was based on the Genetic Algorithm and Direct Search 

Toolbox in Matlab 7.1 (R14). Specifically, the option structure creation function gaoptimset used the 

following parameters: population size of 200, maximum generation of 100, default crossover rate of 0.7 

and mutation rate of 0.1. In each generation the top 3 elite individuals with the highest fitness function 

were kept into the next generation.  

2.2 Cell classification using SVM 

A support vector machine (SVM) [21, 22] with Gaussian Radial Basis Function (RBF) kernel is used 

for cell classification due to its flexibility to handle the non-linear relationships between the classes. For 

each classifier, the continuous output from discriminate function f(x) is used directly to indicate the 

similarity between the specific training set and test sample. Similar to [24], the classification result for 

single cell is the basis of functional score for each experimental condition. 

Grid search for SVM parameters: All SVMs involved were implemented using LIBSVM v3 package 

[23]. An SVM with Gaussian RBF kernel has two main parameters: width for Gaussian kernel : and 

penalty for training error C. A two-stage search of optimal parameters was applied. Using grid.py in [23], 

the preliminary search employed exponentially growing sequences as ; 8 <2>|@ 8 Z, B8 C @ C 8Dand 

: 8 <2E|F 8 Z, B12 C @ C 3D . For each combination of C and : , we carried out 10 times of 10-fold 

cross validation on available training sets, and made sure that all samples were used as testing sample at 

least once. The parameter set with the best cross-validation performance was selected as the candidate, 

and a secondary search in linear scale was carried out in the neighborhood of the candidate to 

determine the final parameter set for the corresponding SVM classifier.  
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3. Generation of Quantified Morphological Signature (QMS) 

3.1 Morphological signature of each dsRNA 

3.1.1 Quantifying single cell morphology using SVM classification results  

SVM classifier attempts to find a hyperplane that best separates the positive and negative classes. 

The raw output of SVM is the distance from x to the discriminant hyperplane and quantifies the 

similarity between x and the given class. Thus, using five SVMs trained in 2.2, the morphology of each 

single cell can be quantified by five scores. Specifically for each cell x, we have: 

1) I3-+JKK , LMNII 8 <O, �, ;, P, QD, raw output from the SVM using class as the positive training set, 

I3R comes from SVM using Normal cells as positive class; and similarly, 

L denotes elongated, bipolar, spindle shaped cells;  

C denotes very large flat cells with smooth edges;  

T denotes small, partially polarized ‘teardrop’ shaped cells;  

R denotes large flat ruffled cells 

2)  �3 � SI3R , I3� , I3T , I3U , I3VW, a 5-tuple score vector quantifying the cell morphology.  

3.1.2 Normal cell filtering   

We observe that different dsRNAs are variably penetrant in their effects on cell shape 

(Supplementary Fig. S2). For example, a dsRNA targeting sticky results in a population where ~90% of 

cells are large and bi-nucleate (Supplementary Fig. S2a), whereas a dsRNA that depletes Pvr results in 

“L” cells in ~30% of the population (Supplementary Fig. S2a). By plotting the percentage of normal “N” 

cells in each EC we could quantify penetrance (Supplementary Fig. S2b). Differential penetrance is not 

due to differential uptake since dsRNAs targeting thread result in cell death in nearly 100% of cells 

(Supplementary Fig. S2c). 

In order to gain insight into the reasons for differential penetrance we used immunofluorescence 

microscopy to quantify protein levels of Drosophila ERK and Akt in single cells where ERK and Akt 

respectively were depleted by different dsRNAs (Supplementary Fig. S2d,e). Interestingly, we see that 

protein levels of both ERK and AKT can vary by 2-3 fold in different wild-type populations, While 

dsRNAs reduce these levels overall, there is still a population of cells with ERK or AKT levels that are 

comparable to levels found in many wild-type cells. Thus we propose that differential penetrance is 

largely due to the inability of different dsRNAs to knockdown protein levels below a certain threshold. 

Mahalanobis distance [25] was used to determine whether a cell has similar morphology as the 

predefined normal cell. Subsequently we could filter normal cells from different populations: 
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1) N=[�X], where each row vector �X quantify the morphology of a cell n, and cell n belongs to the 

training set for Normal phenotype; 

 YZ, the mean vector for N;  

ΣZ, the covariance matrix for N; 

2) �3 � SI3R, I3� , I3T , I3U , I3VW for each single cell x; 

3)  [N%�3 , Z& � ]%�3 B YZ&ΣZ
�!%�3 B YZ&T, the Mahalanobis distance between �3 and N; 

4) M=S[N%�X , Z&W, all distances between the complete dataset N and each row vector �X within N; 

 Y_, the mean of M; 

 `_, the standard deviation of M. 

The following criteria were used for normal cell filtering: 

a) Given all cells within a single well, calculate [N%�3 , Z&;  

b) Calculate the mean Pearson correlation coefficients between �3 and every score vector in N; 

c) If �3 has i) [N%�3 , Z& a Y_ 	 `_, ii) average correlation between �3 and N is larger than 0.85 

and iii) I3R larger than any of <I3� , I3T , I3U , I3VD, the corresponding cell x is considered a normal cell.  

d) If less than 75% cells are considered normal in a well, remove the normal cells based on step c). 

The threshold of 75% is set according to the mean (0.8872) and standard deviation (0.1129) for 

the ratio of normal cells across all wells in control baseline (Supplementary Fig. S2b).  

 

3.1.3 Raw morphology score for a single well  

Given a single well w, after image quality control and normal cell filtering, the raw morphology 

score Sw is the average of single cell scores in w. 

3.1.4 Normalization of raw well scores  

899 dsRNAs were deployed into 5 different plates. Each deployment was repeated 3 times, thus any 

given dsRNA was repeated at least three times. Two types of negative control wells exist in each plate:  

“control empty” wells where no dsRNA was added and “control LacZ” wells where a null dsRNA 

targeting LacZ was added and was not supposed to cause any phenotype change. We have: 

Control baseline b � S�cW, all raw morphology scores of more than 200,000 cells belonging to 

control wells;  

 db � SdeR , de� , deT , deU , deV W , the mean of B; 

 `b � S`eR, `e� , `eT , `eU , `eVW the standard deviation of B;  
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Thus, given any raw score vector fg � SIgR , Ig� , IgT , IgU , IgVW  for certain well w, we normalize Sw into the 

Z-score of control baseline, i.e. hg-+JKK � Kgijkll�mnijkll
onijkll , LMNII 8 <O, �, ;, P, QD . The normalized score 

pg � Shg-+JKK, hg-+JKK, hg-+JKK, hg-+JKK, hg-+JKKW quantifies the morphological change in well w comparing to 

control baseline. 

3.1.5 Repeatability test for wells using a same dsRNA   

To test for repeatability, we test whether wells that are treated with dsRNA D form a compact cluster, 

i.e. whether cells treated with D have a significantly smaller dispersion than random group of cells. We 

denote wells with the same dsRNA D by WD={w1,…wn}: 

1) the dispersion measurement qrs � tuv% wxy ∑ { |}~� , }~��x�,�8rs & , where  denotes the 

Mahalanobis distance between two vectors;  

2) 1000 randomly sampled cell groups rs%E& � <g!%�&, … gy%�&D, F � 1,2 … 1000. Each rs%E&
 has the 

same number of wells as WD, and each well g�%�&, � � w, x … y consists of cells from the same 

plate as wi ; i.e. each rs%E&
 has the same cell number as WD, while containing cells randomly 

sampled from the plates containing wells w1,…wn ; and thus the random sampled cells are 

subject to non-specific RNAi treatments;  

3) 1000 random dispersion measurements qrs%�& , � � w, x … w���; 

4) qs� , the mean value of qrs%�&, � � w, x … w���, and �s�, the estimated distribution of qrs%�& from 

the non-parameterized Parzen window method [26]. 

A one tail permutation test is set up with �s� as the null distribution: 

Null hypothesis H0: qrs � qs� ;  

i.e. qrs  (dispersion for cells with a same dsRNA) is from the same distribution �s� as the cells subject 

to random RNAi. 

Alternative hypothesis H1: qrs C qs� ; 

i.e. when targeted by a same dsRNA, the cells show a significantly smaller dispersion than the cells 

undergoing random RNAi. 

The null hypothesis is rejected at 5% significant level and is carried out in an iterative manner, such 

that when null hypothesis cannot be rejected for WD={w1,…wn}, the tests are repeated while members 

in WD are iteratively removed, until: 

Either null hypothesis is rejected for a subset of WD , whose size is no smaller than n/2; 

Or all subsets are deemed unrepeatable.  

( , )d • •
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Due to the facts that a) cells for a real well wi and a permuted well g�%�&
 come from the same plate; b) 

each plate has different standard deviation on cellular morphology scores; and c) wells treated by a 

certain dsRNA can be located in a same or different plates, and each plate is repeated several times, the 

statistical power of this test varies when different plates are involved. When Parzen window estimation 

is used, 1000 permutations is always enough to detect effect size of 1.5 with 0.85 power at 5% false 

discovery rate (FDR).  

3.1.6 Consolidation of scores through weighted average  

Assume the permutation test in 3.1.5 identified a group of repeatable wells for dsRNA D, the 

consolidated morphology signature for D is obtained, where the reciprocal of the Mahalanobis distance 

from one well to general control baseline serve as the weight for each well, specifically we have: 

1) nD , the size for the repeatable group identified in 3.1.5; 

2) Zw, the normalized morphology score for a (repeatable) well w from 3.1.4; 

3) dw, Mahalanobis distance from a (repeatable) well w to control baseline; 

The consolidated score for dsRNA D has the form of: p� � %∑ w{g� fg�y���w & %∑ w{g�&y���w� . 

3.2 Morphological signature of each gene 

Even after filtering (Supplementary Fig. S3a) different dsRNAs targeting a same gene can elicit 

very different responses (Supplementary Fig. S3b,c), similar to 3.1.5, repeatability tests were also 

carried out on all dsRNAs targeting a same gene. 

3.2.1 Repeatability test based on Mahalanobis distance   

A permutation test similar as in 3.1.5 was applied. Assume dsRNAs D1 and D2 are biological 

replicates targeting a same gene G, we have: 

1) p�w  and p�x , the morphological signature for D1 and D2, respectively; 

2) {�}�w , }�x�, the Mahalanobis distance between two signatures; 

3) 1000 randomly sampled cell groups �%E& � <�!%�& , �x%�&D, F � 1,2 … 1000. Each sampled cell 

group ��%�& % � � w, x; � � w, x … w���& has the same number of wells as real cell group Di, 

and each sampled well in ��%�&
consists of cells from the same plate as the corresponding real 

well in Di ; i.e. each ��%�& has the same cell number as Di, while containing cells randomly 

sampled from the plates containing corresponding real wells and thus the random sampled 

cells are subject to non-specific RNAi treatments;  

4) 1000 random Mahalanobis distances {%�!%�&, �x%�&&, � � w, x … w���; 
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5) d0, the mean value for {%�!%�&, �x%�&&, � � w, x … w���; and P0, the estimated distribution of 

{%�!%�&, �x%�&& from the non-parameterized Parzen window method [26]. 

A one tail permutation test is set up with P0 as the null distribution: 

Null hypothesis H0: {�}�w , }�x� � {�; 

i.e. {�}�w , }�x� (Distance for cells with a dsRNAs targeting a same gene) is from the same distribution 

P0 as the cells subject to random RNAi; 

Alternative hypothesis H1: {�}�w , }�x� C {�; 

i.e. When subject to dsRNAs targeting a same gene, the morphology signatures show a significantly 

smaller distance than those from cells undergoing random RNAi. 

The null hypothesis is rejected at 5% significant level, and unlike 3.1.5, no iterative steps are 

necessary because we directly work on each pair of dsRNAs. Also for each pair of dsRNAs, two p-

values are calculated based on the cell populations before- and after normal cell filtering, respectively. 

Due to the facts that a) cells for a real well wi and a permuted well g�%�&
 come from a same plate; 

b) each plate has different standard deviation on cellular morphology scores; and c) wells treated by a 

certain dsRNA can be located in a same or different plates and each plate is repeated several times, the 

statistical power of this test varies when different plates are involved. When Parzen window estimation 

is used, 1000 permutations are always enough to detect effect size of 1.5 with 0.86 power at 5% false 

discovery rate (FDR).  

3.2.2 Repeatability test based on kernel density estimation and KL/J divergence  

The test in 3.2.1 works on the average scores ZD across cell populations. Next, we consider the 

heterogeneity within each cell population and set up a test on the similarity between two probability 

distributions estimated from the score matrices of two cell populations. 

General Denotation: Assume that a cell population D contains n single cells, and the morphology of 

each cell x can be depicted by a 5-tuple score vector, which is normalized to Z-score of control baseline 

and denoted as �3 � Sh3R, h3�, h3T , h3U , h3VW. Thus, based on the scoring profile p � S��W, � � 1,2 … � for D, a 

distribution can be estimated for any LMNII 8 <O, �, ;, P, QD using the non-parameterized Parzen window 

method [26]. Basically, a Gaussian kernel was applied around each single score h�-+JKKas ��ijkll���ijkll
ℎ

� �
!√�� exp SB !� %�ijkll���ijkll

ℎ
&�W , and the estimated probability distribution function (PDF) for any single 

score from population D is denoted as: �%h�-+JKK& � !Xℎ∑ � ��ijkll���ijkll
ℎ

�X��!  . Where h is a smooth 
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parameter referred to as bandwidth, and an acceptable guess is  ℎ � 1.06`n��.�, where ` denotes the 

standard deviation of  h�-+JKK in � [27]. 

Bandwidth Estimation: Here we use a point-wise strategy from [27]  to adjust bandwidth in the 

distribution estimation. Given p � S��W, � � 1,2 … � for cell population D, hierarchical clustering was 

carried out based on average linkage, unbiased Pearson correlation coefficients (PCC) between the 5-

tuple vectors I� were calculated, and those cells with PCC greater than 0.9 were assigned into a same 

subgroup. Thus, G different subgroups g=1, 2…G can be defined, and we use ng to denote the number 

of cells in each subgroup g. A fast one-dimensional Newton optimization was used to minimize the 

leave-one-out cost function � -+JKK%ℎ& � B ∑ M¡¢� ��-+JKK%h�-+JKK,ℎ&X£��! , in search of local bandwidth 

ℎ -+JKK
 for each g. Finally, the estimated distribution of score f can be re-organized based on the afore-

mentioned cell sub-group assignments as �%h�-+JKK& � !X ∑ ∑ !
ℎ£ � ��ijkll��£,�ijkll

ℎ£ �X£��!¤ �! . 

K-L divergence and J-divergence: After estimating a PDF for each score vector for each cell 

population, we use the J-divergence to measure the difference between two such PDFs. The Kullback–

Leibler divergence [28] is a non-symmetric measure of the difference between two probability 

distributions P and Q, as KL%P||Q& � # P%©&log P%3&Q%3& d©. Further, J-divergence is developed to make it a 

symmetric metric in J%P||Q& � %KL%P||Q& 	 KL%Q||P&&/2 [29, 30].  

Permutation test for repeatability: Given two cell populations D1 and D2, the distributions of five 

morphological scores are available as ��h��-+JKK�, LMNII 8 <O, �, ;, P, QD, � � 1,2 . To avoid the 

computational burden in the following steps, we assume mutual independence among all scores. Thus, 

the overall difference between morphological profiles for D1 and D2 can be defined as J%�w |�x& �
∑ ²%��h�w-+JKK�||��h�x-+JKK�&, LMNII 8 <O, �, ;, P, QD . Let D1 and D2 denote cell populations generated by 

two dsRNAs targeting the same gene, similar to 3.2.1., we have: 

1) J%�w |�x&. 

2) 1000 randomly sampled cell groups �%E& � <�!%�& , �x%�&D, F � 1,2 … 1000. The rule of cell 

sampling is the same as in 3.2.1;  

3) 1000 random divergences J|�!%�& ³�x%�&�, � � w, x … w���; 

4) J0, the mean value for J|�!%�&  ³�x%�&�, � � w, x … w���, and P0, the estimated distribution of 

J|�!%�& ³�x%�&� from the non-parameterized Parzen window method [26]. 

A one tail permutation test is set up with P0 as the null distribution: 
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Null hypothesis H0: J%�w |�x& � ²�; 

i.e. J%�w |�x& (divergence for cells with dsRNAs targeting the same gene) is from the same distribution 

P0 as the cells subject to random RNAi; 

Alternative hypothesis H1: J%�w |�x& C ²�; 

i.e. when subject to dsRNAs targeting the same gene, the morphology signatures show a significantly 

smaller distance than those from cells undergoing random RNAi. 

The null hypothesis is rejected at 5% significant level, and for each pair of dsRNAs, two p-values are 

calculated based on the cell populations before and after normal cell filtering, respectively. The 

statistical power of this test varies when different plates are involved. However, when Parzen window 

estimation is used, 1000 permutations is always enough to detect effect size of 1.5 with 0.90 power at 5% 

false discovery rate (FDR).  

3.2.3  Generation of QMS (Quantitative Morphological Signature) for each gene 

Phenotypic scores: Similar to 3.1.6, the consolidated score for a single gene G has the form: p¤ �
%∑ w{�� pg�y¤��w & %∑ w{��&y¤��w� . Where ZG denotes the consolidated score for a gene, dD is the Mahalanobis 

distance from the morphology signature of a repeatable dsRNA to the signature of control baseline, and 

n
G

 is the number of repeatable dsRNAs for gene G. 

Penetrance Z-score:  All cell populations underwent normal cell filtering, and those non-normal cells 

were considered to be a result of the specific RNAi treatment – or “penetrant”. For each gene, we 

summed the number of penetrant cells in all repeatable wells, and determined the ratio of penetrant cells, 

which was then normalized based on the mean and standard deviation of penetrant cell ratio for control 

baseline wells to get a penetrance Z-score, denoted as PZ. 

Finally, for each gene G, four phenotype scores were combined with PZ to form a 5-tuple QMS 

Spµ́ , p¶́, p·́, p´̧ , p¹́}W. 
 

4. Analysis of QMSs 

4.1 Hierarchical clustering 

In our case, 899 dsRNAs were initially used to inhibit and the majority of known predicted kinases and 

phosphatases and several kinase/phosphatase regulatory subunits and adapters (KP set) in Kc167 cells. 

116 of these showed poor technical repeatability, 71 show poor biological repeatability, and 155 were 

excluded from the final analysis as no repeat was performed. Thus, the scores from 557 dsRNAs were 

used in generating the QMSs used in hierarchical clustering (Fig. 3 and Supplementary S5) or to 
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calculate the divergence matrix (Fig. 4c of the main text). We also calculated QMS for two types of 

negative controls separately and incorporated them into the QMS matrix, thus generating 284 

genes/conditions for hierarchical clustering. Hierarchical clustering using average linkage was 

performed with Cluster [31] and Java
TM

 TreeView [32] using uncentered Pearson Correlation 

Coefficients as the similarity metric; clusters were defined interactively by finding the highest nodes at 

which the distance measure became greater than 0.90. Other similarity thresholds were evaluated and 

this was chosen because this level of correlation resulted in coherent groups of qualitatively similar cells.  

Enrichment test reveal biological relevance for resulting phenoclusters: Hierarchical clustering of 

284 ECs obtained 14 phenoclusters, including 4 singular genes and 10 phenoclusters with at least two 

members. Fisher's exact tests were applied to identify the enrichment of biological themes, including 

pathways, GO terms, and other function annotation terms, using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 [33]. As input for DAVID, all gene symbols 

involved in hierarchical clustering were converted into Entrez ID using the Gene ID conversion tool in 

DAVID and the Gene and reagent lookup tool from Drosophila RNAi screening center [34]. For each 

obtained p-value from Fisher's test, Benjamini corrected p-value and False Discovery Rate were 

calculated to address for multiple tests.  

4.2 Using divergence scores to address cellular heterogeneity 

Cell-to-cell differences are always present to some degree in any cell population, thus the mean 

score of a population may not represent the behaviors of any individual cell [35]. Here, we propose to 

use divergence based scores to address the heterogeneity of phenotypic cell populations.  

General Denotations: Here, the kernel density estimation and divergence calculation methods in 3.2.2 

are extended to the gene level. Assuming each cell population D includes all n cells, and the same local 

bandwidth estimation has been carried out. The distribution of each feature LMNII 8 <O, �, ;, P, QD for 

population D can thus be modeled by �%h�-+JKK& � !X ∑ ∑ !
ℎ£,� � ��ijkll��£,�ijkll

ℎ£,� �X£��!¤ �! . Using the symmetric 

divergence metric J between two distributions, the overall difference between two populations D1 and 

D2 can be obtained. Thus we had J�,º � J��� »���, �, ¼ 8 <1,2 … 284D, � ¾ ¼ for all 284 ECs. Meanwhile, 

J�,�  were assigned the ceiling value of the maximum J�,º , � ¾ ¼ . Each divergence score was then 

normalized into a similarity measurement by Q�,º � %max%J& B J�,º&/%max%J& B min %J�,º&. Larger values 

of Q�,º  indicate better similarity in phenotype composition (both morphology and ratio) between genes i 

and j, and the genes in the same phenocluster should have relatively high value amongst each other. 

The matrix Q is visualized as in Fig. 3c of the main text.  
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Quantifying the differentially sized shape space explored by cell populations: Based on Q�,º, we 

defined a score Q(4)i, i=1,2…284 for the analysis of gene-level cell populations. Given the matrix Q in 

the previous section, for each gene i, Q(4)i=Q(2)i-Q(1)i  the difference between the mean population 

similarity calculated on all genes other than i, (Q(1)i ) and all genes within the same cluster as gene i 

(Q(2)i). Meanwhile, Q(3)i is gene i’s mean population similarity with all genes not in the same cluster as 

i. In an ideal case, large Q(4)i indicates that RNAi treatment of gene i results in cells exploring a unique 

area in phenotypic space, and the cell populations are only similar to those in the same phenocluster. 

When this value is larger than the mean value of the wild-type cells (0.159), the difference is greater 

than 1 standard deviation (S.D.) of genes in wild-type clusters, and the mean QMS of the population is 

also different than wild-type cells, these populations are exploring regions of morphological space that 

are both smaller and distinct from the space explored by the control populations. When this value is 

smaller than the wild-type mean by a difference greater than 1 standard deviation, the population is 

considered to be exploring a larger region of space than wild-type cells.  

5. Network analysis for screening hits in human 

5.1 Extraction of a Protein-Protein Interaction (PPI) network in human 

Human PPI networks were obtained from STRING database [36] v9.0, and only those interactions with 

confidence score larger than 0.6 were used. As a result, 604,897 PPI entries involving 16,518 proteins 

were selected. Here PPIs were recorded in a directed pattern; thus, a common physical interaction 

between proteins A and B was recorded as two entries A->B and B->A. Meanwhile certain “directed” 

interaction categories like gene fusion or transcription factor binding only had one entry. According to 

the graphconncomp function from Matlab
TM

, 16,452 out of these 16,518 proteins form a strongly 

connected component, meaning that given the 604,897 PPI entries, and any two proteins A and B in this 

component: 

1) A and B can be connected by selected PPI entries; 

2) Both paths A->B and B->A are available without violating the direction of each involved entry.  

3) The lengths of shortest paths A->B and B->A are given by graphallshortestpaths function in 

Matlab
TM

. 

5.2 Functional Roles of human homologs for genes with high L scores 

Three groups of proteins (Fig. 7d of the main text) were mapped into the connected human PPI network 

from 5.1: 

1) Group-1– 14 proteins have been previously defined as “pro-elongation” proteins, and include: 
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CrkL, DOCK3, Integrin beta 1, LIMK2, p27Kip1, p53, p130Cas, NEDD9, MyoP, Rab5, RhoE, 

SMURF2, Src, WASF2; 

2) Group-2– 12 proteins have been previously defined as “pro-contractility” proteins, and include: 

3) DIP1, EphrinA, FHOD2, gp130, IL-6, LIMK1, MYL2, PAK2, PDK1, RhoC, STAT3, Stathmin1; 

4) Group-3– 15 proteins, whose inhibition results in elongation in mouse or human cells (Fig. 7) 

and include: 

PLK1, 14-3-3zeta, PTEN, IRAK1, JAK1, PAR-1, MAPK3, MAPK1, SLK, LOK, Cdk4, Cdk10, 

MAST1/2, Liprin-B2. 

The lengths of shortest paths among any two out of these proteins was obtained in 5.1. Specifically, 

for each protein p in group-3 and any protein x from the connected component with 16,452 members, 

we have: 

a) L(p, g1), the mean of shortest-path-lengths between protein p and every member in Group-1; 

b) {L(x, g1)}, the array of mean shortest-path-lengths between any protein x and every member in 

Group-1; 

Lg1, the mean of {L(x, g1)}; 

 ̀!, the standard deviation of {L(x, g1)};  

c) Z(p, g1)=[L(p, g1)- Lg1]/  ̀!; 

d) L(p, g2) and Z(p, g2), defined similarly between protein p and group-2; 

e) Diff(p, g1, g2)=L(p, g1)- L(p, g2), p belongs to group-3; 

Diff(x, g1, g2)=L(x, g1)- L(x, g2), x is any one of the 16,452 connected proteins; 

Z-scores Z(p, g1) and Z(p, g2) indicate whether p is closer/further from group-1 or -2 compared to 

random proteins in the connected component, with a Z-score smaller than -1.98 translating to a p-value 

<0.05 in standard normal distribution. Meanwhile, Diff(p, g1, g2) quantifies whether p is closer to group 

A or group B. It is worth noting that the mean of Diff(x, g1, g2) across 16,452 proteins is -0.08, thus a 

random protein tends to be closer to group-1 than group-2. However, our group-3 can be divided into 3 

subsets: 

i) Diff(p, g1, g2)>1, closer to Group-2 and projected as positive regulator of Group-2; 

ii) Diff(p, g1, g2) between [-0.08, 1]; 

iii) Diff(p, g1, g2)<-0.08, closer to Group-1 and projected as negative regulator of Group-1. 
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