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Summary

Epidemiological studies in humans suggest that skeletal muscle

aging is a risk factor for the development of several age-related

diseases such as metabolic syndrome, cancer, Alzheimer’s and

Parkinson’s disease. Here, we review recent studies in mammals

and Drosophila highlighting how nutrient- and stress-sensing in

skeletal muscle can influence lifespan and overall aging of the

organism. In addition to exercise and indirect effects of muscle

metabolism, growing evidence suggests that muscle-derived

growth factors and cytokines, known as myokines, modulate

systemic physiology. Myokines may influence the progression of

age-related diseases and contribute to the intertissue communi-

cation that underlies systemic aging.
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Introduction

Studies in model organisms have shown that different tissues undergo

distinct levels of deterioration during aging (Garigan et al., 2002;

Herndon et al., 2002), and that signaling events in a single tissue can

affect lifespan, although not all tissues have this ability (Blüher et al.,

2003; Libina et al., 2003; Hwangbo et al., 2004; Wang et al., 2005;

Taguchi et al., 2007). Endocrine communication (or crosstalk) between

aging tissues is an important determinant of organismal aging but the

signals involved are largely unknown (Russell & Kahn, 2007; Panowski &

Dillin, 2009).

In humans, the mortality rate and pathogenesis of many age-related

diseases are associated with the functional status, metabolic demand,

and mass of skeletal muscle (Anker et al., 1997; Metter et al., 2002;

Nair, 2005; Ruiz et al., 2008), suggesting that this tissue is a key

regulator of systemic aging. Recent findings in mammals and Drosophila

confirm this hypothesis and indicate that nutrient- and stress-sensing in

skeletal muscle influence organismal aging. Here, we review recent

studies highlighting the interconnection of skeletal muscle and systemic

aging and the possible role of myokines, i.e. growth factors and

cytokines secreted by muscle cells.

Muscle-specific genetic interventions that influence
systemic aging

Muscle is one of the tissues in which age-related changes are

particularly prominent in the fruit fly Drosophila melanogaster and

other invertebrates (Herndon et al., 2002; Demontis & Perrimon,

2010). During the course of their short lifespan (approximately

10 weeks), fruit flies display a progressive increase in age-associated

apoptosis that is particularly pronounced in muscle and less so in the

brain and adipose tissue (Zheng et al., 2005). Moreover, age-related

changes such as the accumulation of p62/poly-ubiquitin protein

aggregates (Demontis & Perrimon, 2010), gene expression changes

(Girardot et al., 2006), decline in protein synthesis (Webster et al.,

1980), and increased mitochondrial and nuclear DNA damage (Yui

et al., 2003; Garcia et al., 2010) are greater in muscles than in other

tissues in Drosophila.

DNA mutations are highly prominent also in the muscle of aged mice

(Wang et al., 2001; Szczesny et al., 2011). Furthermore, the accumu-

lation of carbonylated mitochondrial proteins during aging is higher, and

the levels of the antioxidant enzymes SOD1, SOD2, and catalase are

lower in mouse skeletal muscle than in the liver, kidney, or heart

(Szczesny et al., 2011). The high metabolic rate and the mechanical and

oxidative stress associated with muscle contraction (i.e. exercise) may

explain the accumulation of dysfunctional proteins and DNA damage

specifically in skeletal muscle. These findings raise the possibility that the

muscle acts as a ‘sentinel tissue’, that is, the earlier onset of age-related

degeneration in muscle may affect aging in other tissues. Several studies

on skeletal muscle-specific genetic interventions in Drosophila and

mammals support this model.

In Drosophila, FOXO and 4E-BP signaling specifically in muscles

activates the autophagy/lysosome system of protein degradation and

organelle turnover not only in muscle but also in the retina, brain, and

adipose tissue thereby reducing the age-related accumulation of protein

aggregates in all these tissues (Demontis & Perrimon, 2010). This

systemic regulation is accompanied by preservation of muscle function,

lifespan extension, lower glycemia, and decreased feeding behavior and

insulin release (Demontis & Perrimon, 2010).

Additional studies have highlighted how oxidative stress resistance

in the muscle influences lifespan. For example, the stress-sensing

kinase p38 MAPK increases Sod2 levels in Drosophila muscles through

the transcription factor Mef2, reduces age-related muscle dysfunction,

and extends lifespan (Vrailas-Mortimer et al., 2011). Moreover,

adenosine monophosphate protein kinase (AMPK) overexpression in

muscles extends lifespan (Stenesen et al., 2013), while muscle-

restricted AMPK RNAi has the opposite effect (Tohyama & Yamaguchi,

2010). In addition to regulating age-related mortality, muscle-specific

genetic interventions regulate organismal sensitivity to environmental

stressors. For example, increased mTOR activity (Patel & Tamanoi,
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2006) or decreased Sod2 (Martin et al., 2009), p38 MAPK (Vrailas-

Mortimer et al., 2011), or AMPK expression in muscle (Tohyama &

Yamaguchi, 2010) reduces the organism’s resistance to oxidative

stress. Altogether, these findings in Drosophila suggest that signaling

events in muscle delay age-related muscle deterioration but also

mitigate age-related functional decline of other tissues, increase the

stress resistance of the organism, improve metabolic homeostasis, and

extend lifespan (Fig. 1).

In agreement with the findings in Drosophila described previously,

some muscle-specific genetic manipulations in mice improve metabolic

homeostasis and delay systemic age-related degeneration. In particu-

lar, increased expression of peroxisome proliferator-activated receptor-

c coactivator 1a (PGC-1a) in muscle promotes mitochondrial biogen-

esis, enhances aerobic metabolism, and mimics the benefits of

endurance training, while it also enhances defenses against oxidative

stress (Wenz et al., 2009). In addition, several age-related metabolic

defects are delayed, including chronic inflammation and reduction in

insulin sensitivity, indicating important systemic consequences of

muscle-restricted PGC-1a activity. Conversely, muscle-specific PGC-1a
knock-out mice display exercise intolerance, myopathy, and abnormal

glucose homeostasis (Handschin et al., 2007a,b). These systemic

effects of PGC-1a activity in muscles presumably result from several

PGC-1a-regulated processes including resistance to oxidative stress

(Wenz et al., 2009), inhibition of atrophy (Brault et al., 2010),

regulation of muscle metabolism, and release of myokines (Boström

et al., 2012).

Another study reported that muscle overexpression of the cytosolic

form of phosphoenolpyruvate carboxykinase (PEPCK-C), a key enzyme in

gluconeogenesis, leads to increased spontaneous activity and motor

function, higher number of mitochondria, reduced body fat, delayed

reproductive aging, and lifespan extension (Hakimi et al., 2007; Hanson

& Hakimi, 2008). Although PEPCK-C overexpression in muscles has these

profound effects on the organism, the resulting metabolic adaptations

and how they influence other tissues are presently unknown.

Although the benefits of PEPCK-C and PGC-1a overexpression in

muscles are probably mediated at least in part by increased mitochon-

drial function, other studies have shown a protective role for mild

mitochondrial respiratory uncoupling in muscles, which results in

enhanced substrate consumption but decreased ATP production. In

mice, skeletal muscle-specific overexpression of uncoupling protein 1

(UCP1) increases the median lifespan and decreases the incidence of

several age-related disease such as lymphomas, diabetes, and

hypertension (Gates et al., 2007; Keipert et al., 2011).

Mechanistically, mitochondrial uncoupling in muscle in response to

UCP1 overexpression activates AMPK, which increases substrate utiliza-

tion and lipid metabolism (Keipert et al., 2013). Mitochondrial uncou-

pling also mildly increases oxidative stress, which in turn induces a

mitochondrial stress response that raises antioxidant defense and

ultimately extends lifespan (Keipert et al., 2013). Protection from obesity

and type 2 diabetes has been observed also in mouse models in which

moderate mitochondrial uncoupling was induced by muscle-specific

ablation of either the mitochondrial intermembrane protein AIF (apop-

tosis-inducing factor; Pospisilik et al., 2007) or TIF2 (transcriptional

intermediary factor 2), a regulator of UCP3 expression (Duteil et al.,

2010). Taken together, these findings indicate that metabolic adapta-

tions and signaling events in muscles influence lifespan and disease

progression in other tissues during aging in Drosophila and mice.

Role of exercise in determining lifespan and
preventing age-related diseases

Exercise and muscle functional capacity are important predictors of age-

related mortality in humans (Anker et al., 1997; Metter et al., 2002; Ruiz

et al., 2011). Several studies indicate protective effects of exercise also in

animal models. For example, endurance exercise rescues mitochondrial

defects and premature aging of mice with defective proofreading-

exonuclease activity of mitochondrial DNA polymerase c (Safdar et al.,

2011). In transgenic mouse models of Alzheimer’s and Parkinson’s

disease, exercise protects animals from neurodegeneration (Zigmond

et al., 2009; Belarbi et al., 2011; Garcia-Mesa et al., 2011). Moreover,

breast and colon cancer progression is inhibited by physical activity

(Hojman et al., 2011), and exercise can extend lifespan in rats (Holloszy,

1988, 1993) and probably also in humans (Ruiz et al., 2011).

However, the effects of exercise may depend on the specific disease

and genetic background (Bronikowski et al., 2006). For example,

exercise acutely activates the autophagy/lysosome pathway in muscle,

liver, pancreas, and adipose tissue of mice (He et al., 2012), and it may

delay systemic aging by promoting the turnover of cellular components

in these tissues. However, exercise does not activate autophagy in old

age (Ludatscher et al., 1983), and it even may be detrimental in disease

conditions in which the autophagic flux is compromised (Grumati et al.,

2011). Moreover, different exercise training programs appear to have

distinct outcomes. For example, although climbing exercise preserves

motor capacity in Drosophila and increases mitochondrial function

(Piazza et al., 2009), flight activity appears to shorten lifespan in

Drosophila and other insects, perhaps due to lipid peroxidation and the

Fig. 1 Systemic regulation of metabolism and aging by skeletal muscle. Studies in

mammals and Drosophila highlight an important role of skeletal muscle in

influencing metabolic homeostasis, lifespan, systemic aging, and the progression

of age-related diseases. Muscle is also important in the organism’s response to

dietary restriction and oxidative stress in Drosophila. Muscle may crosstalk with

other tissues via direct muscle-to-nerve interactions, release of metabolites,

systemic adaptations deriving from the energy demand of contracting muscles

(exercise), and muscle-derived cytokines and growth factors (myokines). In

mammals, myokines modulate several metabolic processes in the pancreas, liver,

adipose tissue, endothelium, the muscle itself, and other tissues, and may influence

systemic aging and lifespan.
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oxidative damage of mitochondrial proteins (Yan & Sohal, 2000;

Magwere et al., 2006; Tolfsen et al., 2011).

The interconnections between exercise, muscle function, and lifespan

are certainly complex, and lifespan and motor decline are not necessarily

linked in Drosophila. For example, flies bearing mutations in the chico/

Insulin Receptor Substrate (IRS) have an extended lifespan and delayed

locomotor decline (Gargano et al., 2005). However, long-lived methu-

selah flies, which are also resistant to oxidative stress, experience

functional decline in muscle with aging (Cook-Wiens & Grotewiel, 2002;

Petrosyan et al., 2007).

Recent studies indicate that muscle function and exercise have

important roles in modulating lifespan in response to dietary restriction

(DR). DR increases spontaneous movement in mice and flies (Partridge

et al., 2005), and the resulting increase in muscle’s metabolic demand

likely contributes to the organism-wide beneficial effects of DR. In

agreement with this hypothesis, wing clipping abrogates the lifespan

extension associated with DR in Drosophila (Katewa et al., 2012).

In addition to exercise and muscle function, muscle mass is also an

important predictor of mortality, especially in diseased individuals, and

can influence the progression and outcome of age-related diseases in

humans (Astrand, 1992; Wisloff et al., 2005). Strikingly, reducing muscle

wasting during cancer cachexia increases the survival of tumor-bearing

mice, even if tumor growth is not affected (Zhou et al., 2010).

Moreover, transplanting muscle stem cells from young mice into old

mice delays sarcopenia and extends lifespan (Lavasani et al., 2012).

Thus, both muscle mass and function have important effects on age-

related diseases and lifespan.

Endocrine, paracrine, and autocrine functions of
muscle via myokines

Because of its sheer mass and high metabolic rate during exercise,

muscle has a profound influence on body metabolism. In addition to the

indirect effect of muscle’s metabolic demand, it is becoming evident that

muscle also has an underappreciated capacity to secrete cytokines and

growth factors, known as myokines, that can act in an autocrine,

paracrine, and endocrine fashion (Fig. 1). Some myokines are primarily

expressed in muscle while others are expressed also in other tissues. The

TGF-beta ligand myostatin is one of the best-characterized myokines and

it is expressed almost exclusively in skeletal and cardiac muscle.

Myostatin knock-out animals have a doubling of muscle mass (Lee,

2004), and myostatin inhibition has been proposed to delay age-related

sarcopenia by preserving muscle mass (Siriett et al., 2006; LeBrasseur

et al., 2009) and possibly strength (Whittemore et al., 2003; Haidet

et al., 2008). However, other studies have indicated that the muscles in

myostatin-null mice, though increased in mass, are not protected from

sarcopenia (Morissette et al., 2009; Wang & McPherron, 2012) and with

aging may even display a greater than expected decline in force

development (Amthor et al., 2007). Moreover, inhibition of myostatin

signaling retards the loss of muscle mass associated with cancer cachexia

(Zhou et al., 2010) but not the muscle atrophy that follows denervation

(Sartori et al., 2009), suggesting that myostatin is not a general

homeostatic regulator of muscle mass.

In addition to the regulation of muscle mass, myostatin knock-out

animals have improved insulin sensitivity and reduced fat mass

(McPherron, 2010). Although these systemic effects indirectly derive

from increased muscle mass (Guo et al., 2009), myostatin is also

released into the circulation and can act on nonmuscle tissues (Zimmers

et al., 2002; McPherron, 2010). In particular, myostatin influences

adipogenesis to generate immature adipocytes with increased insulin

sensitivity and glucose oxidation, leading to systemic resistance to diet-

induced obesity (Feldman et al., 2006). These findings suggest that

myostatin may have important endocrine functions.

In addition to myostatin, muscle produces other myokines, some of

which in response to exercise, including insulin-likegrowth factor-1 (IGF-1;

Arnold et al., 2010; Pedersen & Febbraio, 2012). Although muscle-

derived IGF-1 is not detected in the circulation (Hede et al., 2012), it

induces muscle hypertrophy in an autocrine/paracrine fashion following

exercise (Vinciguerra et al., 2010). Furthermore, several IGF-binding

proteins (IGFBP-3, -4, -5, and -6) are expressed in muscles. They differ in

their capacity to enhance or block the anabolic effects of IGF-1 by

sequestering it, extending its half-life, or inhibiting its interaction with

IGF-1 receptors located on the muscle and satellite cells (Silverman et al.,

1995; James et al., 1996; Vinciguerra et al., 2010). Interestingly, the

expression of IGFBP-3 and -5 decreases in the soleusmuscle during aging

(Spangenburg et al., 2003) and in several types of muscle atrophy in

mice (Lecker et al., 2004). Thus, an autocrine regulatory role in muscle is

clear, but the effects of these binding proteins on other tissues, such as

bone, remain unclear. There are, in fact, many indications that

compensatory changes in bone structure and mass occur in response

to changes in muscular activity. Exercise-induced myokines (e.g. IGF-1)

most likely mediate such effects.

Several myokines appear to mediate the endocrine functions of

muscles on other tissues and organs (Fig. 1). Exercise increases systemic

insulin sensitivity, and some myokines, including IL-6, have been

proposed to act on the insulin-producing pancreatic beta islets. IL-6

promotes the expression of prohormone convertase PC1/3 in pancreatic

alpha cells, which leads to the production of glucagon-like peptide 1

(GLP-1). In turn, GLP-1 sensitizes pancreatic beta cells to glucose and

thus promotes insulin release after food intake (Ellingsgaard et al.,

2011). Although IL-6 expression and IL-6 secretion rise during exercise

(Ostrowski et al., 1998), the levels of many other myokines, hormones,

and metabolites also change after exercise and may affect insulin

secretion. Therefore, it remains unknown whether IL-6 plays a funda-

mental role in exercise-induced effects. Furthermore, IL-6 levels also rise

in highly catabolic conditions (e.g. sepsis and cancer) and contribute to

the hepatic production of acute-phase proteins, inflammation, and the

progression of type 2 diabetes. Thus, the function of IL-6 appears to

differ based on the physiologic context (Kristiansen & Mandrup-Poulsen,

2005). In addition, other inflammatory cytokines generally viewed as

products of macrophages (i.e. TNF-a, IL-1b, and IL-15) can be released

from muscles. These factors have been implicated in regulating insulin

production by pancreatic beta islets, but they also have well-established

effects on the endothelium, white blood cells, and hepatic function

(Alexandraki et al., 2006; Handschin et al., 2007b).

Myokines that influence adipocyte metabolism include myonectin,

IL-6, IL-15, angiopoietin-like protein 4 (ANGPTL4), and the chemokine

CXCL-1. Exercise increases IL-15 expression in muscles, and transgenic

mice overexpressing IL-15 have increased exercise endurance and fatty

acid oxidation (Quinn et al., 2013) and improved insulin sensitivity (Barra

et al., 2012). Signaling crosstalk between muscle and adipose tissue is

also mediated by ANGPTL4. This protein is induced and secreted from

skeletal muscles in response to peroxisome proliferator-activated recep-

tor-d (PPAR-d) activity, which is acutely induced by exercise and plasma

fatty acids. Release of ANGPTL4 from muscle promotes lipolysis in white

adipose tissue, which in turn help supply fatty acids for oxidation in

muscle during exercise (Staiger et al., 2009). Exercise also induces

CXCL--1, which increases lipolysis and fatty acid mobilization from

adipose tissue, and its receptor, CXCR2, which increases fatty acid

oxidation in muscle (Pedersen et al., 2012). The relative importance of
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these myokines and other circulating mediators, such as norepinephrine,

in promoting fatty acid mobilization in exercise and in the fasted state is

unclear and challenging to delineate.

Recently, Spiegelman and coworkers discovered irisin, a new

exercise-induced myokine that regulates beige/brown fat development.

Exercise increases PGC-1a levels, which promotes transcription of the

irisin precursor FNDC5, a type-I transmembrane protein. FNDC5 is then

cleaved, and the extracellular portion, irisin, is released into the

circulation (Boström et al., 2012). Irisin then acts on white adipose

cells to promote the expression of genes responsible for the

development of beige adipocytes, which are related to the thermo-

genic cells of brown adipose tissue (Wu et al., 2012), a tissue that

consumes metabolic substrates for heat production. Therefore, by

promoting the development of beige adipocytes, irisin appears to have

great therapeutic potential as a treatment for diabetes and diet-

induced obesity (Boström et al., 2012). PGC-1a also enhances the

expression and release of other myokines such as VEGF (Arany et al.,

2008), IL-15, and the uncharacterized factors Lrg1 and Timp4 (Boström

et al., 2012), all of which may help explain the benefits of exercise and

PGC-1a on lifespan.

Nutrients and nutrient-sensing pathways also regulate the expres-

sion of some myokines. For example, the expression of musclin, a

myokine almost exclusively expressed in skeletal muscles, is induced by

insulin (Nishizawa et al., 2004) and repressed by the nutrient- and

stress-sensing transcription factor FoxO1 (Yasui et al., 2007). Musclin

reduces glucose uptake and glycogen synthesis in muscles and may

contribute to the development of insulin resistance (Nishizawa et al.,

2004). Insulin also induces the expression of other myokines, including

Insulin-like 6 (Insl6) and fibroblast growth factor-21 (FGF-21), via its

downstream kinase AKT (Izumiya et al., 2008; Zeng et al., 2010).

FGF-21 acts primarily on the liver and prevents insulin resistance and

diet-induced obesity (Kharitonenkov & Shanafelt, 2009). Myonectin is

another nutrient-responsive myokine that is secreted predominantly by

muscle (especially oxidative fibers) in response to glucose and

palmitate and promotes fatty acid uptake by hepatocytes and

adipocytes (Seldin et al., 2012). IL-6 expression is also regulated by

nutrients (intramuscular glycogen levels), in addition to exercise (Keller

et al., 2001).

Many other myokines are known. Follistatin-like 1 promotes

endothelial cell migration and revascularization of ischemic tissues

(Ouchi et al., 2008). Leukemia inhibitory factor (LIF) and Insl6 have

been implicated in regeneration of muscle fibers (Zeng et al., 2010;

Broholm et al., 2011). Oncostatin M (OSM) and secreted protein acidic

and rich in cysteine (SPARC) suppress breast cancer and colon cancer,

respectively (Hojman et al., 2011; Aoi et al., 2013). Additional putative

myokines have been identified by mass-spectrometry but have not yet

been functionally characterized (Henningsen et al., 2010; Norheim

et al., 2011). Interestingly, some myokines can pass the blood-brain

barrier (Banks et al., 1994), suggesting that they may act also on the

brain.

In addition to myokines, mechanisms such as the release of

metabolites from muscle and muscle-to-nerve interactions may mediate

some of the systemic effects of muscle on the organism’s physiology. For

example, muscle contraction stimulates posterior hypothalamic neurons

(Waldrop & Stremel, 1989), which may, in turn, induce systemic adaptive

responses to exercise.

Because myokines are emerging as important endocrine modulators

of metabolic homeostasis, they are also likely to be important in aging.

This hypothesis is supported by the observation that the levels of some

myokines change during aging in mammals (Baumann et al., 2003;

Gangemi et al., 2005). Currently, there are no studies on myokines in

Drosophila. However, its short lifespan and extensive genetic toolkit

make this organism an excellent model in which to study evolutionarily

conserved myokines, such as myostatin, and their role in intertissue

communication during aging.

Conclusions

In this review, we highlighted the evidence for a key role of skeletal

muscle in the systemic regulation of aging and age-related diseases.

Studies in mammals and Drosophila offer complementary advantages for

dissecting the signaling crosstalk between muscle and other tissues and

its role in lifespan determination. The emerging evidence that muscles

release myokines and thus influence the metabolism of the organism

may have important medical applications. Finally, because many

myokines are induced by exercise, understanding their actions may

shed light on how the metabolism of different tissues is integrated

during and after exercise, and how exercise can protect against

age-associated diseases.
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