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Distribution of meiotic recombination events: talking to your
neighbors
Enrique Martinez-Perez1 and Monica P Colaiácovo2
Accurate chromosome segregation during meiosis is essential

for a species’ survival. Therefore, a series of events unfold during

meiosis, including pairing, synapsis, and recombination between

homologous chromosomes, to ultimately ensure the successful

completion of this task. This review will focus on how the

regulation of crossover recombination events between

homologous chromosomes plays a key role in promoting faithful

segregation. Although our understanding of the molecular

mechanisms by which crossovers are formed has increased

significantly, the mechanisms governing the distribution of

crossovers along meiotic chromosomes remain largely

mysterious. Here, we review the different levels of apparent

control of meiotic crossover formation and distribution.
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Introduction
Some aspects of chromosome function, such as the

control of gene expression, involve the regulation of

small chromosomal domains, while other events require

regulatory mechanisms capable of spanning the whole

length of a chromosome. A clear example of the latter

takes place during meiosis. This is the cell division

program in which a single round of DNA replication

is followed by two consecutive rounds of chromosome

segregation, thereby allowing the formation of haploid

gametes from diploid germ cells. The key to this

chromosome halving is the separation of homologous

chromosomes that occurs during the first meiotic

division, a process that requires the recognition and

alignment of the homologs (see also Shaw and Moore,
www.sciencedirect.com
this issue), and the formation of crossover (CO) recom-

bination events between them. We will focus on the

mechanisms that control the formation and distribution

of COs during meiosis.

COs are crucial for faithful meiotic chromosome segre-

gation because they are the basis of the physical linkages

that facilitate the correct orientation of the homologs on

the first meiotic spindle (Figure 1) [1]. The importance of

COs in ensuring correct chromosome segregation during

meiosis is exemplified by the fact that most cases of

human aneuploidy display alterations in the number

and/or distribution of COs [2]. Therefore, the accurate

transmission of an intact genome during gamete for-

mation requires that enough COs are correctly placed

across the entire genome, so that each homolog pair forms

at least one CO (the obligate CO). However, the number

of COs is not simply determined by the size of the

genome; there can be intra-species differences in recom-

bination rates between male and female meioses [3], and

inter-species comparisons demonstrate striking dispar-

ities in the number of COs formed per Mb of DNA

(Table 1). Furthermore, CO events are not evenly dis-

tributed across the genome, most organisms contain

recombination hotspots, which are genomic intervals in

which COs occur at a much higher frequency. In fact, CO

formation is thought to be actively suppressed in certain

locations such as near centromeric regions, where COs

could compromise proper chromosome segregation [2,4].

This article will review the recent developments in our

understanding of CO distribution control, which are

revealing a complex interplay between CO-promoting

and anti-CO mechanisms superimposed onto meiotic

chromosome structure.

How are crossovers made?
Meiotic recombination is initiated via the formation of

programmed DNA double-strand breaks (DSBs) by a

topoisomerase-like protein known as Spo11, which is

present from yeast to humans [5] (Figure 2). The DSBs

are then resected in a 50–30 orientation, resulting in the

formation of 30 single-stranded DNA overhangs that

invade an intact homologous donor template for its repair.

This repair involves nonsister chromatids from homolo-

gous chromosomes, since a barrier to sister chromatid

repair is proposed to be in place during meiosis [6�]
(and references therein). The recombination intermedi-

ates that form are then resolved, giving rise to either COs,

where there is an exchange of flanking markers, or non-

crossovers (NCOs) [7].
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Figure 1

Segregation of a pair of homologous chromosomes during meiosis and mitosis. For simplification, the diagram shows a pair of telocentric

chromosomes (with the centromere located at one of the chromosomal ends) that form a single CO during meiosis. This single CO, together

with sister chromatid cohesion, ensures that the homologs remain attached following the disassembly of the synaptonemal complex (SC). SC

disassembly is coordinated with a remodeling of meiotic chromosomes. Together, these processes promote the acquisition of a chromosome

structure that allows the correct orientation of the homologs on the metaphase I plate. At the onset of anaphase I, the selective release of sister

chromatid cohesion allows the segregation of the homologs to different poles of the spindle. This is followed by the second meiotic division in which

the sister chromatids are separated (in a manner similar to a regular mitotic division), thereby producing four haploid gametes. The second line of the

diagram depicts an example of how the failure to form COs can cause a pair of homologs to missegregate during meiosis. Note how the homologs

lacking a CO fail to align properly on the metaphase I plate, and this results in both homologs migrating to the same pole, which ultimately results in the

formation of aneuploid gametes (this example displays one of the possible segregation patterns that can occur in the absence of COs). The bottom

part of the diagram shows the same pair of chromosomes undergoing a mitotic division. Note how in contrast with meiotic metaphase I, the

centromeres of the sister chromatids are oriented toward different poles of the spindle during mitotic metaphase. The complete release of sister

chromatid cohesion allows for the separation of the sister chromatids, resulting in the formation of two daughter nuclei with an identical chromosome

complement to the mother cell.
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Table 1

Number of post-DSB recombination intermediates and COs in different organisms.

Species Recombination intermediates (RAD51 foci) COs/meiosis Number of chromosomes (2n) Genome size (Mb)

S. cerevisiae 44–50 [51] 90.5 [48��] (Microarray) 32 12

C. elegans 5 � 2 [10] 6d (Genetic map) 12 100

Arabidopsis 80–100 [30] 9 [30] (Chiasmata) 10 125

Maize 493 � 79 [16] 19 � 1 [52] (Chiasmata) 20 2671

Mice (female) 250–420a,b 24.1a (Chiasmata) 40 2500

Mice (male) 230–400a,c 22.6–23.9a (Chiasmata) 40 2500

Human (female) 350–400a 60–70a,e (MLH-1 foci) 46 2900

Human (male) 91–262a 49.6–53.7a (Chiasmata) 46 2900

The RAD51 protein binds to the single-stranded DNA that is produced by the processing of meiotic DSBs; thus, RAD51 foci are used as an indirect

measurement of DSBs. Since the number of RAD51-positive recombination intermediates detected at any given time does not account for all the

DSBs that are made in a single meiosis, counting RAD51 foci most probably results in an underestimation of the actual total number of DSBs formed.

In fact, the number of RAD51 foci observed in S. cerevisiae is only 44–50 (lower than the number of COs), but the total number of DSBs formed during

meiosis must be at least 136, which is the average number of recombination events (COs plus NCOs) detected using high-density microarrays [48��].

In the third column (COs/Meiosis), the method used to estimate the number of COs in each organism is given in parenthesis. COs have been identified

cytologically mainly in two ways: first, before the SC is disassembled ZMM-dependent CO sites are marked by the protein MLH-1; second, once the

SC is disassembled, COs can be directly visualized as chiasmata, physical connections between the homologs formed by a CO and flanking sister

chromatid cohesion (Figure 1). In organisms where both MLH1 foci and chiasmata have been scored, the number of MLH1 foci closely resembles the

number of chiasmata.
a The references for all these values are given in [7].
b These values are the minimum and maximum numbers of RAD51 foci detected in two studies.
c These values are the minimum and maximum numbers of RAD51 foci detected between four studies.
d http://www.wormbase.org/.
e These values represent the averages of MLH1 foci from two studies.
Under circumstances when a homolog is not available for

repair, meiotic DSBs can be repaired using the sister

chromatids as a template, or even by error-prone mech-

anisms such as nonhomologous end joining. These two

modes of DSB repair do not result in inter-homolog CO

formation and therefore do not contribute to accurate

homolog segregation.

The distribution of DSBs
DSBs are a prerequisite to COs, therefore their placement

across the genome represents an initial mode of control of

CO distribution. Early studies showed that DSBs are

enriched in specific locations (DSB hotspots) that corre-

late with nuclease-hyper-sensitive regions [8]. Thus, local

chromatin structure appears to be an important determi-

nant of DSB formation. Indeed, histone H3 trimethyla-

tion of lysine 4 (H3K4me3), an epigenetic mark

associated with active chromatin, seems to mark DSB

sites in S. cerevisiae [9]. Higher order chromosome struc-

ture is also involved in controlling the number and

location of DSBs, based on results from mutants for a

condensin-related protein in C. elegans [10]. The genome-

wide mapping of DSBs in S. cerevisiae shows that most

DSBs tend to occur in intergenic regions containing

promoters and in regions 20–120 kb from the telomeres,

but are absent from the 20 kb regions adjacent to telo-

meres [11�]. Surprisingly, DSB hotspots were also found

in the CO-depleted pericentromeric regions [11�,12�],
which were previously thought to be DSB coldspots.

These observations illustrate how DSB placement

appears to be controlled both locally (by chromatin struc-

ture) as well as by the relative position with respect to
www.sciencedirect.com
chromosomal landmarks such as telomeres. Importantly, a

telomere-led mechanism that promotes DSB formation in

subtelomeric regions could act to ensure that all chromo-

somes receive at least one CO, regardless of their size

[11�,13].

In S. pombe, the DSB landscape appears to be mainly

controlled locally, with the majority of the prominent

DSB hotspots localizing to a discrete class of large inter-

genic DNA and to loci that express noncoding RNA

[14,15]. The expansion of this genome-wide DSB map-

ping approach to organisms with larger genomes should

significantly improve our understanding of DSB distri-

bution.

DSB fates
In the various organisms studied thus far, the number of

DSBs seems to far exceed the number of COs. In maize,

for instance, up to 560 post-DSB recombination inter-

mediates are observed at early meiotic prophase [16], but

only around 20 COs are present at later stages (Table 1).

The molecular analysis of CO hotspots in budding yeast,

humans, and mice shows that both COs and NCOs arise

from the same recombination-rich locations [17–20]. This

is consistent with the idea that the CO or NCO fate of a

particular DSB is not simply predetermined by its geno-

mic location but is rather the outcome of more complex

regulatory mechanisms.

Data from S. cerevisiae suggest that the CO fate of a DSB is

established as early as the transition from DSB to single-

end invasion [17,20,21]. A number of proteins, collectively
Current Opinion in Genetics & Development 2009, 19:105–112
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Figure 2

Homologous recombination-mediated DSB repair. The diagram shows a single sister chromatid (as a double stranded DNA molecule) from each

homolog. After the topoisomerase-like enzyme Spo11 forms a meiotic DSB, the DSB site is processed by removal of the covalently bound Spo11 and

resection of the ends in a 50–30 orientation. This results in the formation of 30 single-stranded tails with which the Rad51 and Dmc1 strand-exchange

proteins associate. These nucleoprotein filaments proceed to invade a homologous intact template for repair, resulting in the formation of a nascent D-

loop structure. These unstable strand invasions can be dismantled by SGS1; however, CO-fated DSBs are protected from the action of SGS1 by the

ZMM proteins, which promote the formation of single end invasions. Second end capture, followed by DNA synthesis and ligation, results in the

formation of a double Holliday junction (dHJ) intermediate, which is resolved as a CO by an unknown dHJ resolvase. Although not depicted in the

diagram, dHJs may also be resolved as NCOs. Nascent D-loops that are not stabilized by the ZMM proteins can be repaired by a mechanism known

as synthesis-dependent strand annealing (SDSA). This requires DNA synthesis and the displacement of the invading strand, which might be promoted

by RTEL1. Annealing of the displaced strand with the other DSB end is followed by DNA synthesis and ligation, resulting in the formation of NCOs. The

anti-recombination activity of SGS1 is needed to prevent the formation of aberrant joint molecules that occur when secondary strand invasions take

place. Some of the aberrant joint molecules that are not disassembled by SGS1 are resolved as COs by MUS81. Apart from this late role, MUS81 may

also play earlier roles in the resolution of aberrant joint molecules.

Current Opinion in Genetics & Development 2009, 19:105–112 www.sciencedirect.com
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known as ZMM, are involved specifically in the formation

of COs but not NCOs (Figure 2) [21,22,23�,24]. The

analysis of mutants lacking different ZMM components

in S. cerevisiae and Arabidopsis shows that most, but not all,

COs are formed by a ZMM-dependent pathway in these

organisms [22,25]. Similarly, mice lacking MLH1, a protein

involved in the late steps of ZMM-dependent CO for-

mation, display a severe, albeit not complete, reduction of

crossovers [26]. Most ZMM-independent COs detected in

S. cerevisiae, mice, and Arabidopsis, appear to be dependent

on the endonuclease Mus81 [27–29]. However, residual

COs are detected in double mutants defective in the

Mus81 and ZMM pathways [27,30], demonstrating that

some COs can be formed independently of both the ZMM

proteins and Mus81. By contrast, a single CO pathway

seems to be responsible for virtually all COs in C. elegans
and S. pombe. Worms use a ZMM-dependent pathway,

notably via MSH-4, a ZMM component [31], while in S.
pombe all COs seem to be dependent on Mus81 [32]. In

summary, meiotic DSBs can be repaired in at least three

different ways: NCO, ZMM-dependent CO, and ZMM-

independent CO.

Anti-crossover activities
The ultimate fate of a DSB is not simply determined by

CO-promoting factors but also by the presence of anti-

recombination mechanisms. The Sgs1 helicase, a RecQ

family member, suppresses mitotic COs, and recent stu-

dies show that the anti-CO activity of Sgs1 is also present

during meiosis [33��,34��,35,36]. sgs1 mutants show only a

slight increase in COs compared with wild type, but

elimination of Sgs1 in mutants defective in any of the

ZMM components rescues the CO defect observed in

zmm mutants [35,36]. This observation has led to a model

in which ZMM proteins act at CO-designated sites to

stabilize early recombination intermediates from the

action of Sgs1.

CO-designated sites also appear to require the anti-

recombination activity of Sgs1 to prevent the formation

of aberrant multichromatid joint molecules (Figure 2),

which lead to the formation of closely spaced COs that

can impair homolog segregation [36]. The endonuclease

Mus81 appears to collaborate with Sgs1 in promoting the

formation of inter-homolog COs by resolving aberrant

joint molecules [33��,34��] (Figure 2). The conserved

RTEL1 helicase also shows an anti-recombination

activity during meiosis [37�]. Worms lacking RTEL1

display elevated numbers of COs, and in vitro studies

show that human RTEL1 promotes the disassembly of

D-loop recombination intermediates [37�]. Thus, during

meiosis, RTEL1 could promote the disassembly of early

inter-homolog joint molecules, thereby favoring the for-

mation of NCOs (Figure 2). These studies illustrate how

the complex and dynamic interactions between CO-pro-

moting and anti-CO mechanisms, affect the outcome of

meiotic recombination.
www.sciencedirect.com
Crossover interference
A remarkable aspect of CO distribution is that COs

exhibit ‘interference’ [38]; this is based on the obser-

vation that when two or more COs happen on the same

chromosome, they tend not to occur near one another. In

C. elegans, interference appears to limit COs to one per

homolog pair in most meioses [39]. Surprisingly, strains

homozygous for a fusion of two chromosomes (that would

normally enjoy a CO each), display a single CO on the

fused chromosome in most meioses [40]. This demon-

strates a chromosome-wide control of CO distribution

that can extend over distances greater than that of a

regular chromosome length.

Several models have been proposed to explain how CO

interference is transmitted (reviewed in [41]). Early

models involved transmission along the synaptonemal

complex (SC), a proteinaceous structure that holds the

cores of the homologs in close proximity during meiotic

prophase. Synapsis initiation complexes containing ZMM

proteins, however, display interference before SC for-

mation [42]. This demonstrates that CO-designated

events can exert interference, and its transmission does

not require a mature SC.

The ‘stress relief’ model proposes a link between CO

interference and changes in the physical state of chromo-

somes: mechanical stress along meiotic chromosomes

promotes CO designation, and CO designation is accom-

panied by structural changes that relieve mechanical stress

in flanking regions, thereby inhibiting the occurrence of

additional COs nearby [22,43]. Recent studies demon-

strate that COs (or CO precursors) induce changes in

the organization and molecular composition of the chromo-

some axes in which they occur [44�,45�,46�,47]. Moreover,

in C. elegans these changes seem to be established on the

basis of the distance between the single CO and the closest

telomere [46�], thereby invoking some form of long-range

communication along meiotic chromosomes.

An added level of complexity is that only COs formed by

the ZMM-dependent pathway seem to display interfer-

ence. However, in spo16 mutants (a newly identified

ZMM component) the residual COs continue to show

interference [23�]. These observations suggest that the

capability to induce interference is not intrinsic to all CO

events per se. Moreover, genome-wide mapping of recom-

bination events has detected evidence for interference

between COs and NCOs [48��]. Identifying the specific

events capable of triggering interference remains a major

challenge in research.

Crossover homeostasis
A recent study in S. cerevisiae revealed a nonlinear quan-

titative relationship between DSBs and COs [49��]. This

study took advantage of a spo11 allelic series, where the

levels of DSB formation consisted of �80%, �30%, and
Current Opinion in Genetics & Development 2009, 19:105–112
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�20% of wild-type DSB levels. CO frequencies were

then monitored throughout eight intervals spanning three

chromosomes. A key observation derived from this

analysis was that meiotic CO levels tended to be main-

tained despite a reduction in the number of initiation

events, a phenomenon the authors referred to as ‘cross-

over homeostasis’. However, some genomic regions were

less capable, compared with others, of displaying CO

homeostasis. Further analysis of both CO and NCO

frequencies at the ARG4 locus (a natural meiotic recom-

bination hotspot) suggested that a decrease in DSB

frequencies resulted in a maintenance in CO levels at

the expense of NCOs. Moreover, the reduction in DSB

levels had little or no effect on either the strength of CO

interference or the distance over which it could be

detected. Therefore, interference within a given chro-

mosomal interval may be mostly independent of the

numbers of DSBs produced in that region. Taken

together, this new manifestation of CO control revealed

a bias imposed by CO homeostasis toward CO formation,

presumably to ensure proper chromosome segregation.

This suggests that CO homeostasis may be important in

promoting the formation of the obligate CO, and that it

may be intertwined with the molecular mechanism result-

ing in CO interference.

A recent genome-wide analysis of recombination utilizing

DNA microarrays allowed for a global correlation be-

tween COs and NCOs and provided further support for

CO homeostasis in S. cerevisiae [50��]. Whereas CO

homeostasis was part of normal CO control in wild type,

it was reduced in zip2 and zip4 mutants, which affect

meiotic chromosome synapsis and show reduced CO

interference. However, CO homeostasis was not reduced

to the same degree as CO interference. Therefore, the

correlation between these modes of CO control is not as

straightforward as predicted and remains to be explained.

Local regulation within a chromosome:
telomeres and centromeres vs. hotspots
The distribution of COs along chromosomes is not

uniform. This is exemplified by the enrichment for

COs at recombination hotspots in contrast to the reduced

levels of recombination observed at either telomeres or

centromeres. Previous observations have suggested that

COs too near to centromeres can negatively impact

chromosome segregation whereas COs too near to the

repetitive DNA present at telomeres can result in recom-

bination between nonhomologous chromosomes. The

recent advent of microarray-based methods to investigate

CO and NCO levels genome wide has allowed for further

analysis of the local regulation of COs within a chromo-

some. In line with previous observations, Mancera et al.
[48��] observed a complete lack of recombination at all

centromeres and low recombination rates in centromere-

proximal regions in S. cerevisiae. However, results were

more variable for regions near telomeres, with some
Current Opinion in Genetics & Development 2009, 19:105–112
chromosomes completely lacking recombination and

others having strong recombination activity near a telo-

mere. By contrast, Chen et al. [50��] observed reduced CO

levels at both centromeres and telomeres in S. cerevisiae.
However, NCO levels were maintained at telomere ends

despite the �2-fold reduction in DSB formation in that

region, suggesting an alteration in the CO:NCO ratio.

Interestingly, the 6-fold repression in CO levels observed

within 10 kb from centromeres, was also accompanied by

a 6-fold reduction in NCO levels at the same interval.

Moreover, their studies revealed that centromeric repres-

sion is Zip1-dependent. Thus, regulation of CO levels at

centromeres may not stem from alterations in the

CO:NCO ratio but instead result from changes from an

inter-homolog to an inter-sister mode of repair. Further

support for this stems from studies mapping DSB hot-

spots in budding yeast that suggest an accumulation of

unrepaired centromere-proximal DSBs in the absence of

Dmc1, a meiotic recombinase involved in both inter-

homolog and inter-sister recombination [11�,12�].

Summary
The formation of inter-homolog COs during meiosis is

the outcome of a series of decisions that are affected by

local factors, such as chromatin structure and the distance

with respect to chromosomal landmarks (i.e. centromeres

and telomeres), as well as by chromosome-wide mech-

anisms, namely CO interference. How these aspects of

CO regulation are integrated to ensure that COs are

placed in an orderly fashion across the genome remains

one of the most intriguing aspects of meiosis. Future

studies will therefore aim to elucidate the molecular

machinery that determines how and when a recombina-

tion event is designated to become a CO. Moreover,

further studies will examine how this CO-fated event

‘talks’ to its neighbors thereby affecting both the fate of

the listener as well as the chromosomal structures used for

this ‘conversation’.
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